
IoT-Dashboard with ThingsBoard and mioty

Create your own IoT-Dashboard to display your sensor values in a simple and clear way.

Components and supplies

 AVA gateway

 WEPTECH Indoor Humidity- & Temperature Sensor

Apps and online services

www.thingsboard.io

About this project

The Story
In this project you will learn how to create your own IoT-Dashboard to display your sensor values in a
simple and clear way. The topic is explained using a temperature sensor, but it is also possible with all
other sensors.

What you need

 ThingsBoard cloud maker account. This is free for the first few months. It is also possible to
do an on-premise installation for free.

 mioty base station to receive your messages. e.g. AVA gateway from Weptech.
 External or internal service and application center with MQTT output. This is already

included in the AVA gateway.
 mioty sensor e.g. temperature sensor.
 Any linux based pc to interconnect the mioty MQTT output with ThingsBoard. This can run

directly on the mioty base station, if you have the login information.

Preparation
Please get familiar with ThingsBoard by following the getting started guide. This mioty guide will take a
similar approach with MQTT and mosquitto-clients.
https://thingsboard.io/docs/getting-started-guides/helloworld-pe/?connectdevice=mqtt-linux

In a mioty system, each sensor needs to be registered in the application center. Please also use the
correct blueprint so that the payload is automatically parsed. If you haven’t done this before, you can
take a look at the “base station setup and connecting end-point” guide.

MQTT reception of mioty telegrams
As a first step we collect the mioty telegrams via MQTT from the mioty application center. This is done
with a simple python script. You can find it in the code section of this guide. Paho is used as python
client. It can be installed with

pip install paho-mqtt
After inserting the correct server ip (e.g. localhost or ava.fritz.box) the script can be started with

python3 mqtt_client_example.py

The output should look similar to this:

 2

Troubleshooting:
If only raw endpoint data is displayed, please make sure that the Blueprint is configured correctly.

Understanding mioty eui and ThingsBoard tokens
In the mioty ecosystem every device has its own eui. It is an official IEEE-EUI-64 and therefore
unique. On the ThingsBoard every device has an id, but the access token is more important . New
telemetry values can be uploaded with this token.

Publishing messages to ThingsBoard
The second step is now to push the mioty telegrams into the ThingsBoard with the second python
script in the code section. Please insert in the top section your euiTokenPair. The eui can be found on
your device or in the received topic message. If everything works correct it should look like:

 3

After receiving a MQTT message from the mioty application centerthe script searches for a valid
euiTokenPair and parses all fields in the blueprint and assembles the correct format for ThingsBoard
telemetry data string. After this the program mosquito is called and it executes a single publish. This
includes a CONNECT operation followed by a CONNACK from ThingsBoard. Afterwards the message
gets PUBLISHed and ThingsBoard acknowledges it with PUBACK. Then the connection is closed.

If you have a mioty device that transmits a message every few minutes, it is totally fine to establish a
new connection every time. If you have a very active device, you could consider rewriting the code to
have a stable connection to ThingsBoard.

Now your Data should be visible on ThingsBoard.

Troubleshooting:
If you get now “Publish to ThingsServer” line. Please make sure the eui in the euiTokenPair has the
same formatting as in the first line.
If you receive now CONNACK the access is granted over the access token from ThingsServer. Please
check your Token.

Create your own IoT-Dashboard
 ThingsBoard offers many widgets to create fancy dashboards. If you have followed the getting
started guide from ThingsBoard you should already have a first dashboard. Here is an example:

 4

Code

MQTT reception of mioty telegrams
#!/usr/bin/python3
from __future__ import print_function
import paho.mqtt.client as mqtt # pip install paho-mqtt
import ssl
import json

mqtt configuration
server = "localhost" #"ava.fritz.box"
port = 1883
path = 'mioty/+/+/uplink'

def on_message(client, userdata, message):
 print("received topic:", message.topic)
 print(" ", message.payload)
 fields = json.loads(message.payload.decode("utf-8"))
 print(" baseStations:")
 for i in fields['baseStations']:
 print (" bsEui:", hex(i["bsEui"]), ",rssi: ",round(i["rssi"],1),
"dBm, snr:", round(i["snr"],1), "dB")

 if(fields['typeEui'] != 0):
 print(" Endpoint Type:")
 print(" typeEui:",hex(fields['typeEui']))
 if(isinstance(fields['meta'], dict)):
 for x in fields['meta']:
 print(" ", x, ":", fields['meta'][x])

 print(" Endpoint Data:")
 print(" raw:", fields['data'])
 valueDict = fields['components']
 if(isinstance(valueDict, dict)):
 for x in valueDict:
 print(" ",x,":", valueDict[x]["value"],valueDict[x]["unit"])

 print("\n\n")

def on_connect(client,userdata,flag,rc):

 5

 print("connect")
 client.subscribe(path)

client = mqtt.Client()
client.on_message = on_message
client.on_connect = on_connect
client.connect(server, port, 60)

try:
 client.loop_forever()

except KeyboardInterrupt:
 client.loop_stop()
 client.disconnect()

Publishing messages to ThingsBoard

#!/usr/bin/python3
from __future__ import print_function
import paho.mqtt.client as mqtt # pip install paho-mqtt
import ssl
import json
import os

Put in your Mioty-Eui and Thingsboard Token
Format: [["Eui1","Token1"],["Eui2","Token2"],["Eui3","Token3"]]
euiTokenPair = [
 ["70-b3-d5-67-70-11-xx-xx","xxxxxxxxxxxxxxxxxxxx"],
 ["70-b3-d5-67-70-11-xx-xx","xxxxxxxxxxxxxxxxxxxx"]
]

mqtt configuration
miotyServer = "localhost" #"ava.fritz.box"
miotyPort = 1883
path = 'mioty/+/+/uplink'

def on_message(client, userdata, message):
 #-- new mioty telegram received
 print("received topic:", message.topic)
 print(" ", message.payload)
 fields = json.loads(message.payload.decode("utf-8"))

 #-- search for correct Eui Token Pair
 for sens in euiTokenPair:
 sensorEui = sens[0]
 sensorToken = sens[1]
 if(message.topic.find(sensorEui)>=0):
 print("Publish to thingserver")

 #-- Assamble Data String
 first = True
 valueDict = fields['components']
 msg = ""
 for x in valueDict:
 if(first == False):
 msg += ","
 msg += "\"%s\":%s"%(x,str(valueDict[x]["value"]))
 first=False

 #Publish Data to thingsboard via mosquitto
 mosCmd = "\
mosquitto_pub -d -q 1 \
-h \"mqtt.thingsboard.cloud\" -p \"1883\" \
-t \"v1/devices/me/telemetry\" -u \"%s\" -m {%s}"%(sensorToken,msg)
 print(mosCmd)
 os.system(mosCmd)

 6

 print("\n\n")

def on_connect(client,userdata,flag,rc):
 print("connect")
 miotyClient.subscribe(path)

miotyClient = mqtt.Client("mioty")
miotyClient.on_message = on_message
miotyClient.on_connect = on_connect
miotyClient.connect(miotyServer, miotyPort, 60)

try:
 miotyClient.loop_forever()
except KeyboardInterrupt:
 miotyClient.loop_stop()
 miotyClient.disconnect()

