

Internal

GETTING STARTED WITH MIOTYTM

Tutorial for setting up and operating a
MIOTYTM Network

F RA U NH OFE R I N ST IT UT E F OR I N T E G RA TE D C I RC U I TS I I S

2

GETTING STARTED WITH MIOTYTM

Tutorial for setting up and operating a MIOTYTM
Network

Fraunhofer Institute for Integrated Circuits IIS, Erlangen

Michael Rüger

© Fraunhofer IIS

Erlangen,May 2023

All images: © Fraunhofer IIS

3

Data transfer and data

visualization

Contents

1 Data transfer and data visualization .. 4
1.1 Introduction to Docker .. 4
1.1.1 Docker Compose .. 5
1.2 Introduction to Node-Red, InfluxDB, Grafana and Thingsboard 5
1.2.1 Node-Red .. 6
1.2.2 InfluxDB .. 7
1.2.2.1 Data organization ... 7
1.2.3 Grafana .. 8

2 Installation and Setup of the containers .. 10
2.1 Docker Installation .. 10
2.2 Portainer - managing containers ... 10
2.3 Starting the containers stacks .. 11
2.3.1 Docker-Compose in the terminal ... 11
2.3.2 Docker-Compose in Portainer ... 12

3 Visualization via Thingsboard .. 14
3.1 Thingsboard Web Interface ... 14
3.2 Managing Data Flow with Node-Red for Thingsboard 15
3.3 Building Dashboards in Thingsboard ... 18

4 Visualization via Grafana .. 20
4.1 Storing data with InfluxDB .. 20
4.2 Managing Data Flow with Node-Red for Grafana 21
4.3 Data visualization in InfluxDB .. 24
4.4 Data visualization with Grafana ... 25

5 Appendix .. 28
5.1.1 Docker-Compose file Thingsboard Cloud Installation 28
5.1.2 Docker-Compose file Thingsboard Local Installation 28
5.1.3 Docker-Compose file Grafana Installation 28
5.1.4 Node-Red Configuration Thingsboard ... 29
5.1.5 Node-Red Configuration Grafana .. 32

4

Data transfer and data

visualization

1
Data transfer and data visualization

When working with MIOTYTM the first step is to deploy the sensors which transmit their
data over MIOTYTM. The base station can now receive and decode the transmitted signals
as well as store the sensor data for a limited amount of time. The data must go through
several steps before it can be displayed using an IoT platform. The complete processing
chain is shown in Figure 1. To access the data from the base station, the base station
runs a MQTT broker, which publishes the data to subscribed devices. To simplify the data
extraction and conversion to the right format, a tool called NodeRed is used. It is well
suited for data flow modification and offers several interfaces to retrieve or store data.
Once the sensor data has been converted into the needed representation, it must be
assigned to the correct sensor node and subsequently stored inside a database.
Thingsboard and Grafana are two great and powerful tools for data visualization and
offer great ways of working with IoT data. Thingsboard uses a built-in database to store
its data. Data can again be published using the MQTT protocol. On the other hand,
Grafana is only responsible for the visualization of the data and therefore requires an
external database to store the sensor data. For that the time-series database InfluxDB is
used because it offers great advantages in speed as well as an easy to operate web-
interface.

Figure 1 MIOTY Processing Chain

To deploy these multiple different applications and have them work with each other is
not a simple task. The use of Docker is a great way to simplify this process and offer
good support for different types of hardware.

In this tutorial it is shown how to setup an IoT platform for storing and displaying sensor
data with the help of Docker. Multiple approaches with either Thingsboard or Grafana
offer great alternatives for different use cases. At the end new sensor data is
automatically retrieved from the base station, stored inside a database and can be
visualized with the different platforms.

1.1
Introduction to Docker

Docker can be a very powerful tool, when working with different applications on various
types of hardware. The platform enables the user to quickly and easily deploy programs.
The programs are encapsulated in so called images. Once an image gets deployed, it is
called a container and is run in an isolated environment. Multiple of those containers can
be deployed on one host system. Since a container contains all necessary files for
execution it does not rely on dependencies on the host system. This means that Docker
containers can be run on any operating system or hardware configuration, which makes
it very versatile and consistent in deployment. Communication between containers over
shared virtual networks is still possible and enables the integration of multiple programs.
Ready to deploy images can be downloaded on a central database, called DockerHub.

5

Data transfer and data

visualization

This makes Docker very well suited for self-hosting an IoT-Platform like Thingsboard or
Grafana in combination with a time-series database InfluxDB. To achieve the correct data
representation, the data from the base station has to be converted into the right data
format. One possibility to achieve this step is with the help of Node-Red.

1.1.1
Docker Compose

If an application requires multiple containers to function it can be difficult to keep an
overview of all the different ports, networks and dependencies. The tool Docker
Compose simplifies this process by combining everything into one file called docker-
compose.yml. An exemplary file is given below. It starts a service called mytb with the
Thingsboard image from the Docker Hub. Important for the correct functionality is the
port mapping. The container requires specific ports to be mapped for communication.
For instance, the port 1883 is internally used for the MQTT protocol. MQTT messages
sent to port 1884 of the host system, then get forwarded to port 1883 inside the
container. Environment variables can be used to set specific functions inside the
container. To preserve data generated by the container it can be useful to create volumes
and map them to the file system of the container. When the container gets deleted or
recreated the data is still protected.

version: '3.0' # Specifies the Docker Compose version
services: # All containers are defined under this section
 mytb: # Name of the first service
 restart: always # Restart policy
 image: "thingsboard/tb-postgres" # Image of the container (local or from the Docker Hub)
 container_name: Thingsboard # Name of the container
 ports:
 - "8080:9090" # Port mappings xxxx:yyyy ->
 - "1884:1883" # Port xxxx on Host System gets mapped to Port yyyy of the container
 - "7070:7070"
 - "5683-5688:5683-5688/udp"
 environment:
 TB_QUEUE_TYPE: in-memory # Setting environment variables of the container
 volumes:
 - ~/.mytb-data:/data # Maps Volumes to the container ->
 - ~/.mytb-logs:/var/log/thingsboard # Source_on_Host_System:Destination_in_container

This collection of services is often referred to as a stack and can be started with the
command inside the directory of the docker-compose.yml file:

docker compose up –d

Required images are automatically downloaded and all containers are started. To stop a
running stack simply run the command

docker compose stop

Further information and documentation regarding Docker can be found on the Docker
website.

1.2
Introduction to Node-Red, InfluxDB, Grafana and Thingsboard

To display and work with the data sent by the MIOTY endpoints several deployment
options are conceivable. The data is firstly received by the base station and subsequently

https://docs.docker.com/
https://docs.docker.com/

6

Data transfer and data

visualization

made available by a MQTT broker running on the base station. This data has to be
formatted in a specific way and then forwarded to the IoT platform. This task can be
done relatively simple with the help of Node-Red.

Multiple deployment options with different advantages and disadvantages are
considered in this guide.

1) Thingsboard as a cloud service

 Easy and fast to deploy, constant availability

 Subscription fee

2) Thingsboard as a local service in Docker

 Free, same functionality as cloud service

 More complicated to setup, additional steps for availability outside the

local network

3) Grafana as a local service in Docker

 Free, very good data visualization options, fast

 Requires additional database container, additional steps for availability

outside the local network

Dependent on which option is suited the best, there are different containers required.
The following section gives a short overview about the different programs and their
functionality. Implementation details regarding the different options can be found in
chapter 2

1.2.1
Node-Red

Node-Red is a graphical development tool that allows the user to manage data flow. It
is built as a modular system with many different function nodes. These nodes can be
connected with each other to exchange messages and modify the data. There are also
many different input and output nodes for exchanging data with many different
interfaces. For instance setting up a MQTT broker is as simple as adding a node and
specifying the address and the subscribed topic. In addition to the basic functions it is
also possible to install several additional nodes with extended functionalities.

Figure 2 Node-Red example flow

7

Data transfer and data

visualization

In Figure 2 a minimalistic flow shows how the processing of data can be done. The data
either comes in form the base station broker that is subscribed to relevant topics or from
an inject node, that can simulate the data arriving for testing purposes. The function
node contains JavaScript code that extracts the relevant information from the incoming
message and returns the data in the required format. The output of the node can be
seen on the right side. The egress node publishes the data using the MQTT protocol to
the Thingsboard server. It is important to deploy any changes to the running version via
the button in the top right corner. Further information about Node-Red can be found on
the homepage.

1.2.2
InfluxDB

Data storage is an important aspect for countless applications. For structured data, as it
is mostly the case for IoT applications, databases are well suited option of storing large
amounts of data. InfluxDB is a database that is especially suited for time series data (data
that is associated with a timestamp, like a sensor reading). It allows fast read and write
times for queries regarding a time interval. This can be useful during the data
visualization. In most cases IoT devices collect sensor readings in regular intervals, which
very quickly leads to a large amount of data for each sensor. For many applications the
data is only needed with that high precision for a limited time. InfluxDB allows automatic
data combining strategies to reduce the data size. Accessing the database is made easy
by using API tokens.

1.2.2.1
Data organization

InfluxDB uses a hierarchical data storage model. On the top level the data is organized
in buckets. One bucket can have multiple measurements and these measurements can
again have multiple tags and fields.

 Bucket: Named location where time series data is stored. A bucket can contain
multiple measurements.

 Measurement: Logical grouping for time series data. All points in a given
measurement should have the same tags. A measurement contains multiple
tags and fields.
 Tags: Key-value pairs with values that differ, but do not change often.

Tags are meant for storing metadata for each point – for example,
something to identify the source of the data like host, location, station,
etc.

 Fields: Key-value pairs with values that change over time – for example:
temperature, pressure, stock price, etc.

 Timestamp: Timestamp associated with the data. When stored on disk
and queried, all data is ordered by time1.

The web-interface of InfluxDB offers a great visualization of this hierarchy. Figure 3
InfluxDB shows a configuration of storing the temperature values from a sensor. From
the bucket mioty there is one measurement available called temperature_sensor. The
temperature values are stored in the temperature field. In the case that this sensor would
also provide humidity readings, these values are shown as an additional entry in the field
section. The collected data can also directly be viewed in the web-interface as a graphical
chart as well as only the raw data.

1 Quelle: https://docs.influxdata.com/influxdb/v2.6/get-started/

https://nodered.org/

8

Data transfer and data

visualization

Figure 3 InfluxDB Web interface

InfluxDB is a great solution to store data collected from IoT devices. Using the database
is made easy through integration in Node-Red and Grafana. It can be easily deployed via
Docker and offers a beginner friendly, graphical web-interface for interacting with the
database. In combination with Grafana it is a very powerful tool in visualizing and
working with IoT data.

1.2.3
Grafana

The first version of Grafana was released in 2014 and has now become a well-established
software for the visualization of data. It allows easy integration of a variety of different
data sources as well as a huge possibility of customizing the visualization. To get familiar
with the software Grafana offers an online version with many different example
dashboards and data sources to play around with. The website can be found here. Figure
4 is taken from this website and shows an exemplary dashboard for the visualization of
the data.

https://play.grafana.org/

9

Data transfer and data

visualization

Figure 4 Grafana Example Dashboard (https://play.grafana.org)

What makes Grafana and InfluxDB interact well together is the time aspect of the data.
The desired timespan can be selected in the top right corner and InfluxDB can make a
fast query to its database.

https://play.grafana.org/

10

Installation and Setup of the

containers

2
Installation and Setup of the containers

A very easy solution to deploy and manage an IoT platform is via Docker. Docker
simplifies many steps, is well suited for different hardware and is very easy and fast to
deploy. To further simplify the container management, it is recommended to work with
Portainer. Furthermore, it has to be decided which deployment option referred to in
chapter 1.2 is suited the best for the application.

2.1
Docker Installation

A positive aspect is that Docker runs on a variety of different hardware and operating
systems. Docker provides a desktop version for all major operating systems (Windows,
macOS and Linux), simply called Docker Desktop. It comes with all the necessary tools
needed to build and run containers and stacks. To run a container a virtual environment
is created where it is deployed. The installation steps and requirements for Windows are
found here. The installation guides and files for other operating systems can be selected
on the left. It is only recommended to install Docker Desktop on Windows and macOS
based systems, since Docker Desktop creates a virtual machine to run the Docker daemon
which can run natively on Linux.

On Linux based systems there exists another possibility to install Docker without using
the Docker Desktop app. The Docker Engine is available for many different distributions
of Linux and offers the same functionality without the graphical interface and without
the need of a virtual machine in the background to run the Docker daemon. If you are
planning to run Docker on Linux this is the preferred installation method. Detailed steps
for the installation for Ubuntu bases systems can be found here. To be able to run the
Docker-command as a non-root user, follow the steps given here.

Once the installation is successfully completed open a new terminal and verify it by
running:

docker run hello-world

If everything is working as intended this will print out a message confirming that the
installation was successful.

2.2 Portainer - managing containers

Docker is a program that is mainly used from the command line. Managing containers
without a graphical interface can be quite challenging especially for beginners. A great
tool for working with containers using an easy to use and intuitive interface is Portainer.
It offers a web-interface where new containers can be created, deployed or stopped. It
is also possible to check log files or open a command prompt inside a running container.
It is not a necessity for the further steps in this tutorial, but is still recommended for easier
usability.

The easiest way of running Portainer is inside a Docker container. The community edition
is free to use and easy to setup. Simply follow the steps for your operating system given
on the Portainer website. After a short startup time of the container the web-interface
of Portainer should be accessible in the browser.

https://www.portainer.io/
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/linux-postinstall/
https://www.portainer.io/
https://docs.portainer.io/start/install-ce/server/docker

11

Installation and Setup of the

containers

When logged in, chose the local environment. A navigation bar on the left with all the
relevant topics for managing containers, like networks or volumes will appear. Under the
container section you should see at least see one running container – Portainer. Created
containers can be easily started, stopped or deleted. Under the “Quick Actions” section
log files can be inspected or command prompt inside the container can be opened.
Figure 5 shows the Portainer web-interface under the container section.

Figure 5 Portainer Dashboard

All currently downloaded images can be inspected under the Images section as well as
their size. To enable communication between containers, networks must be defined.
Volumes allows the storage of data independent of the container. This is useful to persist
data beyond the life of a single container.

2.3
Starting the containers stacks

To process and visualize the data from the IoT sensors, this tutorial describes two
different ways to achieve this. The visualization is either done with Thingsboard or
Grafana. In both cases, additional software is required besides the actual program. The
tool Docker Compose allows several containers to be combined into a single stack and
thus significantly simplifies the deployment. The configuration files contain everything
that is needed to start and enable the communication between the different containers.
With that the service can be online within a few minutes and only minor steps inside the
programs have to be made to visualize the first IoT data.

There exist different options to deploy a stack, either with the use of the command line
or directly in Portainer under the stacks section. In general these two ways do not differ
much but if the Portainer option is chosen, the stack can once again be stopped or
deleted in the web interface of Portainer. Once deployed all the containers of the stack
can be monitored via Portainer and usually don’t require any further setup steps.

2.3.1
Docker-Compose in the terminal

First create a new folder in your preferred directory and subsequently create a file called
docker-compose.yml. This file defines all the containers, called services, which have to
be started as well as volumes to persist the data of the container beyond its life.
Depending on your preferred option of IoT platform, choose the correct configuration

12

Installation and Setup of the

containers

and paste them into the docker-compose.yml file. The different file contents can be
found under section 5.1.1 – 5.1.3.

To start the stack only a single command is needed:

docker-compose up –d

Firstly, the correctness of the configuration file is verified and then all the required images
are automatically downloaded and the containers are started. The flag –d specifies, that
the stack should be executed in the background (detached mode).

To display all created and running containers use:

docker ps

To stop the stack simply use the command

docker-compose stop

2.3.2
Docker-Compose in Portainer

Creating stacks in Portainer is very easy and fast through the use of the graphical
interface. Under the stack section click on add stack in the top right to add a new stack.
Now the stack can be given a name and the configuration can be added. Depending on
your preferred option of IoT platform (Grafana or Thingsboard), choose the correct
configuration and paste them into the field. The different file contents can be found
under section 5.1.1 – 5.1.3. Figure 6 shows the procedure of adding a stack in Portainer.

Figure 6 Adding a stack in Portainer

To start the stack, scroll to the bottom of the page and click deploy. After that all missing
images are automatically downloaded and the containers are started.

Under the Stacks section should now be one stack listed. To verify that all containers are
running correctly, they can be inspected in the Container section. After all containers are
fully started, they should either have the status active or healthy. If any errors occur,
verify the contents of the Docker-compose file. Also, the containers’ log-files can give
further details on the problem. To inspect the contents, simply click on the corresponding
icon in the list of containers.

13

Installation and Setup of the

containers

Figure 7 Portainer logfile inspection

14

Visualization via Thingsboard

3
Visualization via Thingsboard

Thingsboard is an open-source IoT Platform, that is designed for data visualization via
the use of widgets. To store the recorded data, it has to be sent via the MQTT protocol
to a broker running on the Thingsboard instance. The rest, like data storage and
visualization, is done by Thingsboard. Depending on the requirements a deployment
option as a local installation of Thingsboard or a cloud solution is feasible. The cloud
solution offers easier remote access but is also tied to a subscription fee. Details about
the different cloud options and pricing can be found here.

With Thingsboard being deployed in the cloud, only a local instance of NodeRed is
required to receive the data from the base station, convert it into the right data format
and forward it via MQTT to Thingsboard. For a local installation additionally the
Thingsboard container has to be deployed. Refer to chapter 5.1.1 and 5.1.2 for the
required Docker-compose files and deploy the stack as shown in chapter 2.3.1
or 2.3.2.

3.1
Thingsboard Web Interface

After a short startup time the container’s web interface can be accessed from a browser
on port 8080 on the host machine (URL: http://localhost:8080). After in using the
credentials tenant@thingsboard.org as the username and tenant as a password, all
features can be accessed.

For a first and simple setup only the Devices and Dashboard section is needed, to first
add the device and then displaying its data using for instance a time series graph. In
Figure 8 the overlay of Thingsboard is shown.

Figure 8 Thingsboard Web Interface

To add a new device, click the plus sign in the top right corner under the Devices tab and
provide a name and an optional description. Once added an access token is automatically
generated. It is used to authenticate the user and to update the database with new
sensor readings. It is required in section 3.2 when setting up the data conversion and
publishing of the data.

https://thingsboard.io/pricing/
http://localhost:8080/

15

Visualization via Thingsboard

Figure 9 Thingsbaord Device Configuration

Figure 9 shows the configuration settings of a device. Once sensor data is published, the
newest values can be inspected in the Lastest telemetry tab. The access token can also
be found here.

Once all desired devices are added, Thingsboard is now setup to receive sensor data via
the MQTT interface. These messages can be easily sent using Node-Red.

3.2
Managing Data Flow with Node-Red for Thingsboard

Since Thingsboard only accepts a specific data format to store the data, conversion is
needed. The base station provides a JSON string containing the data of all sensors as well
as addition information about the base station. Each sensor node is identified by a unique
identifier called EUI. The goal is to find the correct data path for a received EUI from the
base station and extract the relevant data from the string. Thingsboard requires the data
to be transmitted as a JSON string, containing at least one key and value pair. An example
of a possible message to the Thingsboard server is:

{
 "tempeature":22.43,
 "humidity":52,
 "pressure":1025
}

One pair consists of a key (“temperature”) and a corresponding value (22.43). The unit
of the measurement is not transmitted and must be specified later during the
visualization process. To be able to publish this data, an access token must be provided
as authorization during this procedure. This token is generated once per IoT device in
the Thingsboard overlay and connects the EUI with the registered device in Thingsboard.
With that each device can be uniquely identified.

Node-Red is running inside a container and can be accessed on port 1880 (URL:
http://localhost:1880). With the import feature it is easy to deploy a preconfigured flow,
where all the important functions are already defined. The configuration is provided in a
JSON string (see section 5.1.4) and can be easily imported using the feature found
inside the menu in the top right.

The flow consist of three different tasks (Figure 10) :

http://localhost:1880/

16

Visualization via Thingsboard

1. The reception of data from the base station

2. The data conversion and validation of the correct EUI

3. The publishing to a Thingsboard device using an access token

Different nodes each provide different functionalities:

 Purple Node (MQTT in/out): MQTT Broker or Client

 Blue Node (Inject node): Used to manually inject data into the flow

 Green Node (Debug node): Used to display messages of the flow

 Ocher Node (Function node): Used to implement own functions in JavaScript

Figure 10 Node-Red Processing Flow

The Base station node represents a MQTT broker, which is subscribed to the topic
mioty/+/+/uplink. This includes the newest uplink messages from each sensor node. This
means that for each individual sensor node with a unique EUI a message is processed by
the flow. Once new data is available from any sensor it is automatically received and
processed by the flow. To connect to the base station, its IP address must be entered
in the configuration. To open the configuration double click the node and click on
the pencil next to the server to change the setup of the broker. Enter the correct IP
address in the server field. It is the same IP address that is needed to access the web
interface of the base station. The port is likely not changed and should stay 1883. To
check if the connection can be established, click deploy in the top right corner and wait
for a green box next to the node. Otherwise check the IP address again and make sure
the base station and the PC are in the same network. Don’t forget to deploy each
change.

The next step is to extract the desired sensor data from the message coming from the
base station and returning a JSON string in the format described above. Additionally the
EUI of the message has to match the one specified by the function. This assures, that
each message gets forwarded and stored only once and gets connected with the correct
device in Thingsboard. The flow is preconfigured for a single device. If more devices are
added, simply copy and paste (Ctrl+C and Ctrl+V) the conversion and publishing node.
Refer to Figure 11 for the layout.

17

Visualization via Thingsboard

Figure 11 Node-Red multiple Sensor Nodes

For each sensor node one function block should exist and each node should be
configured to the EUI of each sensor. Double click on the node to open its
implementation and enter the correct EUI as a decimal number in the variable. If the
EUI of the message complies with the specified value, this function returns a JSON string
containing all the endpoint data to be published to Thingsboard. If no conversion block
exists for a given EUI the message is ignored.

As the last step the publishing node has to be configured to store the data for the correct
device in Thingsboard. For each EUI in a function block determine to what device in
Thingsboard the data should be sent and copy its access token from Thingsboard.
This token is used to uniquely identify the device and authenticate the access to the data.
Again double click on the outgoing node and press the pencil next to the server
field to edit the configuration. Docker brings the advantage that the IP address of the
Thingsboard instance does not need to be specifically entered. It can just be referenced
by the name and resolved in the background. In the security tab paste the access
token from the Thingsboard device into the username field (Figure 12).

Figure 12 Node-Red Thingsboard Authentication

This links the EUI of the sensor to a device in Thingsboard. Once new sensor data arrives,
it gets automatically forwarded and stored in Thingsboard. In Figure 13 shows the data
arriving from the base station and the processed JSON string that gets forwarded to
Thingsboard inside the debug window.

18

Visualization via Thingsboard

Figure 13 Node-Red Data Processing

Inside the Latest Telemetry section in Thingsboard the newest data should be displayed.

3.3
Building Dashboards in Thingsboard

If the data flow is setup correctly and the sensor is sending data in regular intervals. Its
data can be displayed in Thingsboard with the help of dashboards. Dashboards offer a
wide variety of different data representation possibilities to present the data in an
appealing way.
To create a new dashboard follow the steps shown in Figure 14. In the Dashboard section
select the plus icon, create a new dashboard and give it a suiting name.

Figure 14 Thingsboard Dashboard Creation

To add widgets to the newly created dashboard, enter the edit mode by clicking on the
pencil in the bottom right corner and then add widget. There can be found a big
collection of different types of widgets that can be added. As a starting point a time
series graph is a good possibility of representing temperature data. It can be found under
the chart section.
To specify what data should be displayed a new data source must be added first. Select
Entity as the type and then click in the Entry alias * field and create a new alias for your
desired device. For instance your device could be similar to the configuration shown
below. Make sure to select Device as a type. These steps are also shown in Figure 15.

19

Visualization via Thingsboard

Figure 15 Thingsboard Adding A Datasource

If the data source is configured correctly and there are already enough measurement
points, there should be a graph visible. The time interval can also be adjusted in the top
right corner (Figure 16).

Figure 16 Thingsboard Dashboard

New widgets can now easily be added as well as new data sources for more sensor
data. Feel free to try out different things to find a suiting representation.

20

Visualization via Grafana

4
Visualization via Grafana

Another data visualization software that is commonly used for IoT applications is
Grafana. It offers great customizability and easy integration of data sources. It is used in
combination with Node-Red to process and forward the sensor data provided by the
base station and InfluxDB to store the key value pairs.

To start all the required containers refer to chapter 2.3 on the options on how to start a
stack. The required configuration, which contains all the different containers and port
mappings is given in section 5.1.3. Once successfully started, three containers should be
running: Node-Red, InfluxDB and Grafana. These containers also offer web interfaces for
configuration and controlling of the data flow and can be directly accessed inside the
browser under the following links:

 Node-Red: http://localhost:1880

 InfluxDB: http://localhost:8086

 Grafana: http://localhost:3000

4.1
Storing data with InfluxDB

First of it is necessary to setup the data storage with the help of InfluxDB. The database
is specifically optimized for storing and accessing data associated with a timestamp. A
short overview about how the data storage is organized can be found in section 1.2.2.

First of open the web interface on port 8086 and create a new user as well as an
organization. Since most of the time only one person works with this data, it is not
relevant for later. Also a bucket has to be created to later store the sensor values. See
Figure 17 for reference.

Figure 17 InfluxDB User Creation

To access the database an API token is used. It is generated once and is used to
authenticate the user for publishing new data to the database as well as making a query
to retrieve data. The token is only displayed once during creation and must therefore be
saved for later usage.
To create a token, navigate to the API Tokens section under the third category on the
left side. Select All Access Token to allow access to all data and buckets. A custom

http://localhost:1880/
http://localhost:8086/
http://localhost:3000/

21

Visualization via Grafana

token with limits to specific buckets is also possible. Enter a description and then click
safe. Store this token in a safe place for later usage.

To store the data a bucket has to be setup. A bucket can contain multiple measurements,
which refer to a logical grouping of time series data, for example one specific sensor. So
one bucket can store the data of multiple sensors. Verify that you have created a bucket
where the data should be stored.

Now everything is setup to be able to store and retrieve data from InfluxDB.

4.2
Managing Data Flow with Node-Red for Grafana

The aim of Node-Red is to extract and convert the data coming from the base station to
match the required data format of InfluxDB. The base station provides a JSON string
containing the data of all sensors as well as addition information about the base station.
Each sensor node is identified by a unique identifier called EUI. The goal is to find the
correct data path for a received EUI from the base station and extract the relevant data
from the string. InfluxDB requires the data to be transmitted as a JSON string, containing
at least one key and value pair. An example of a possible message to InfluxDB is:

{
 "tempeature":22.43,
 "humidity":52,
 "pressure":1025
}

One pair consists of a key (“temperature”) and a corresponding value (22.43). The unit
of the measurement is not transmitted and must be specified later during the
visualization process. To be able to publish this data, the API token of the last chapter
must be provided.

Node-Red is running inside a container and can be accessed on port 1880 (URL:
http://localhost:1880). Node-Red does not offer direct support of interacting with
InfluxDB but this functionality can be imported. To extend the palette of functions
either press Alt+Shift+P or select Manage Palette in the menu in the top right corner.
Subsequently switch to the Install section and search for influxdb and install the
package node-red-contrib-influxdb. These steps are also shown in Figure 18.

http://localhost:1880/

22

Visualization via Grafana

Figure 18 Node-Red Installing InfluxDB

With the newly installed nodes further steps can be initiated. With the import feature it
is easy to deploy a preconfigured flow, where all the important functions are already
defined. The configuration is provided in a JSON string (see section 5.1.4) and can be
easily imported using the feature found inside the menu in the top right. Copy
the configuration in the empty field and click on import.

The flow consist of three different tasks (Figure 19) :

1. The reception of data from the base station

2. The data conversion and validation of the correct EUI

3. The storage of data to InfluxDB

Different nodes each provide different functionalities:

 Purple Node (MQTT in/out): MQTT Broker or Client

 Blue Node (Inject node): Used to manually inject data into the flow

 Green Node (Debug node): Used to display messages of the flow

 Ocher Node (Function node): Used to implement own functions in JavaScript

 Brown Node (InfluxDB out): Used to store data in Influx database

Figure 19 Node-Red Processing Flow

23

Visualization via Grafana

The Base station node represents a MQTT broker, which is subscribed to the topic
mioty/+/+/uplink. This includes the newest uplink messages from each sensor node. This
means that for each individual sensor node with a unique EUI a message is processed by
the flow. Once new data is available from any sensor it is automatically received and
processed by the flow. To connect to the base station, its IP address must be entered
in the configuration. To open the configuration double click the node and click on
the pencil next to the server to change the setup of the broker. Enter the correct IP
address in the server field. It is the same IP address that is needed to access the web
interface of the base station. The port is likely not changed and should stay 1883. To
check if the connection can be established, click deploy in the top right corner and wait
for a green box next to the node. Otherwise check the IP address again and make sure
the base station and the PC are in the same network. Don’t forget to deploy each
change.

The next step is to extract the desired sensor data from the message coming from the
base station and returning a JSON string in the format described above. Additionally the
EUI of the message has to match the one specified by the function. This assures, that
each message gets forwarded and stored only once and gets connected with the correct
device in Thingsboard. The flow is preconfigured for a single device. If more devices are
added, simply copy and paste (Ctrl+C and Ctrl+V) the conversion and publishing node.
Refer to Figure 11 for the layout.

Figure 20 Node-Red multiple Sensor Nodes

For each sensor node one function block should exist and each node should be
configured to the EUI of each sensor. Double click on the node to open its
implementation and enter the correct EUI as a decimal number in the variable (Hint:
many conversion tools can’t handle large numbers, to convert the hex value to decimal
inside Node-Red, click on the EUI value inside the debug window for an arriving message
from the base station). If the EUI of the message complies with the specified value, this
function returns a JSON string containing all the endpoint data to be stored in InfluxDB.
If no conversion block exists for a given EUI the message is ignored.

In the last step the data gets sent to the database via the InfluxDB out node, which has
to be configured first. This can be done by double clicking the node. First the database
server has to be setup. You can edit the preconfigured settings by clicking the pencil on
the right side. Make sure to select 2.0 as the version, because this allows the
authentication via an API token. The URL of the server does in most cases not have to be
changed, since all containers should be running in one environment. In the last step copy
your generated API token from section 4.1. After the token is entered, update the
configuration to save everything.

In the next step enter your chosen organization name from the last chapter as well as
the bucket name, which should store the data. One bucket can be responsible for
multiple sensor nodes. To distinguish the sensors form another, each one is stored in a
new measurement with a unique name. So if multiple sensors should be added, only the

24

Visualization via Grafana

Measurement name in the InfluxDB out node has to be changed for each. As an example
you can refer to Figure 21 for a setup.

Figure 21 Node-Red Influx Configuration

After everything is configured, make sure to deploy the changes by clicking the button
in the top right corner. If a green square appears next to the base station, it could connect
successfully. Otherwise make sure to verify the IP address of the base station. If new data
is arriving from the sensor and its EUI is specified in the conversion function, the data
should be displayed by the Published Data node. Inside the debug window you can also
specify what messages from which node should be displayed to make it easier to follow.
If no errors appear, the data should be successfully stored inside InfluxDB. Otherwise
make sure the API token is setup correctly.

4.3
Data visualization in InfluxDB

Not only Grafana allows the displaying of data, but there is also a quick and easy way to
inspect data and build dashboards in InfluxDB. To just inspect data head to the Data
Explorer. Otherwise if you want to create a dashboard navigate to the Dashboard section
by clicking the icon in the web interface of InfluxDB, create a new dashboard and add a
cell to it.

The data explorer will open where you can choose the desired method of representing
the data in the top left corner as well as specify what data should be displayed. For that
select a bucket at the top level and subsequently specify which measurement and field
you want to display. In most cases a measurement represents a specific sensor which
again can have multiple sensor values like temperature and humidity. Figure 22 shows a
reference on how this can be setup. To update the graph click the SUBMIT button.

25

Visualization via Grafana

Figure 22 Displaying data in InfluxDB

For simple applications this representation might be sufficient, but for more advanced
scenarios Grafana is the preferred option.

4.4
Data visualization with Grafana

Grafana is a software specifically designed for displaying data and is therefore a solid
option to display the collected data from InfluxDB. The web interface is available via
http://localhost:3000 on the host machine where the Docker containers are running.
When trying to access Grafana for the first time, the default login information are admin
for both the username and the password. You can configure a more secure password
after the first login.

Before the data can be displayed, InfluxDB must first be added as a source to Grafana.
On the Home tab you can find a direct link for that or navigate to configuration and Data
sources in the bottom left corner. Now select InfluxDB as your desired data source and
after that choose Flux as the query language. The only values that have to be filled out
are under InfluxDB Details (Organization and (API) Token) and the URL of the Influx
server, which is http://influxdb:8086. See Figure 23 for reference. By clicking Save & Test,
Grafana automatically tests the data source and displays how many buckets are found
in this server. If this was successful the first dashboard can be created.

http://localhost:3000/
http://influxdb:8086/

26

Visualization via Grafana

Figure 23 Grafana Data Source Configuration

Dashboards are used to display data in various formats and styles. A dashboard usually
consists of multiple panels, which are used to display one dataset. For instance some
types are time series graph, gauge, bar chart, heat map and histogram. The dashboards
offer a high degree of customizability and can be build according to the needs of the
application.

First head back to the home tab where you can find a panel to create your first dashboard
and add the first panel to it. At first this may seem a bit complicated so let’s take it step
by step. Figure 24 shows an overview of the panel with the separate sections. The main
field (number 1) contains the data representation like a graph or a gauge. Switching
between the different possibilities can be done in the top right corner. Another important
section (number 2) is the specification of which data should be represented. Firstly make
sure, that the InfluxDB data source is selected. For accessing data a special programming
language, called Flux, is used. Documentation can be found here: Documentation Flux.
To make the process easier, select Sample Query -> Simple Query to get the skeleton of
a request to the database. Now the bucket, measurement and field of the data needs to
be specified. After that click in the graph window to update everything. If data is available
for the specified time period, a graph should be visible. The period can be adjusted in
the top right of the graph window (number 4). Additionally functions and filters can be
applied on the data for instance smoothing the graph. This can be handled by a specific
function aggregateWindow(). See the documentation for more details. As an example
the call below applies a mean filter with the duration of 2 minutes on the data:

|> aggregateWindow(every: 2m, fn: mean)

In the right column title, measurement unit, scaling etc. can be configured. This section
is pretty self-explanatory.

https://docs.influxdata.com/flux/v0.x/

27

Visualization via Grafana

Figure 24 Grafana Panel Building

To finish the configuration, click on apply in the top right corner. Also make sure to save
the dashboard, before closing it. Grafana offers many possibilities of data visualization.
Figure 25 shows an example dashboard on how temperature data can be visualized.

Figure 25 Grafana Example Dashboard

28

Appendix

5
Appendix

5.1.1
Docker-Compose file Thingsboard Cloud Installation

version: '3.7'
services:
 node-red:
 image: nodered/node-red:latest
 container_name: nodered
 restart: always
 environment:
 - TZ=Europe/Amsterdam
 ports:
 - "1880:1880"
 volumes:
 - node_red_data:/data

volumes:
 node_red_data:

5.1.2
Docker-Compose file Thingsboard Local Installation

version: '3.7'
services:
 mytb:
 restart: always
 image: "thingsboard/tb-postgres"
 container_name: Thingsboard
 ports:
 - "8080:9090"
 - "1883:1883"
 - "7070:7070"
 - "5683-5688:5683-5688/udp"
 environment:
 TB_QUEUE_TYPE: in-memory
 volumes:
 - thingsboard_data:/data
 - thingsboard_log:/var/log/thingsboard

 node-red:
 image: nodered/node-red:latest
 container_name: nodered
 restart: always
 environment:
 - TZ=Europe/Amsterdam
 ports:
 - "1880:1880"
 volumes:
 - node_red_data:/data

volumes:
 node_red_data:
 thingsboard_data:
 thingsboard_log:

5.1.3
Docker-Compose file Grafana Installation

version: '3.7'
services:

 node-red:
 image: nodered/node-red:latest
 container_name: nodered
 restart: always
 environment:

29

Appendix

 - TZ=Europe/Amsterdam
 ports:
 - "1880:1880"
 volumes:
 - node_red_data:/data

 influxdb:
 image: influxdb:latest
 container_name: influxdb
 restart: always
 environment:
 - INFLUXDB_DB=influx
 - INFLUXDB_ADMIN_USER=admin
 - INFLUXDB_ADMIN_PASSWORD=admin
 ports:
 - '8086:8086'
 volumes:
 - influxdb_data:/var/lib/influxdb

 grafana:
 image: grafana/grafana
 container_name: grafana-server
 restart: always
 depends_on:
 - influxdb
 environment:
 - GF_SECURITY_ADMIN_USER=admin
 - GF_SECURITY_ADMIN_PASSWORD=admin
 - GF_INSTALL_PLUGINS=
 links:
 - influxdb
 ports:
 - '3000:3000'
 volumes:
 - grafana_data:/var/lib/grafana

volumes:
 node-red-data: {}
 grafana_data: {}
 influxdb_data: {}
 node_red_data:

5.1.4
Node-Red Configuration Thingsboard

[
 {
 "id": "84d6f5ec8bdf3a8d",
 "type": "tab",
 "label": "Thingsboard Data Flow",
 "disabled": false,
 "info": ""
 },
 {
 "id": "3e38263fb3a29716",
 "type": "mqtt in",
 "z": "84d6f5ec8bdf3a8d",
 "name": "Basestation",
 "topic": "mioty/+/+/uplink",
 "qos": "2",
 "datatype": "json",
 "broker": "07827416c33c117e",
 "nl": false,
 "rap": true,
 "rh": 0,
 "inputs": 0,
 "x": 190,
 "y": 280,
 "wires": [
 [
 "f55004ed3cd17e0e",
 "6018209582f4d5d9"
]
]
 },

30

Appendix

 {
 "id": "6018209582f4d5d9",
 "type": "function",
 "z": "84d6f5ec8bdf3a8d",
 "name": "Conversion and EUI check",
 "func": "\nvar eui = \"8121069193317515000\"; // In Decimal\n\nif
(String(msg.payload.typeEui) != eui) {\n return null;\n}\n\nvar values = {};\nfor (var name in
msg.payload.components) {\n var j = msg.payload.components[name];\n values[name] =
j.value;\n}\n\nreturn { payload: values };\n",
 "outputs": 1,
 "noerr": 0,
 "initialize": "",
 "finalize": "",
 "libs": [],
 "x": 580,
 "y": 280,
 "wires": [
 [
 "feb91c841d654f61",
 "513cf183ab494b0d"
]
]
 },
 {
 "id": "feb91c841d654f61",
 "type": "debug",
 "z": "84d6f5ec8bdf3a8d",
 "name": "Published Data",
 "active": true,
 "tosidebar": true,
 "console": false,
 "tostatus": false,
 "complete": "payload",
 "targetType": "msg",
 "statusVal": "",
 "statusType": "auto",
 "x": 820,
 "y": 220,
 "wires": []
 },
 {
 "id": "a9ae1895bbd7447f",
 "type": "inject",
 "z": "84d6f5ec8bdf3a8d",
 "name": "",
 "props": [
 {
 "p": "payload"
 }
],
 "repeat": "",
 "crontab": "",
 "once": false,
 "onceDelay": 0.1,
 "topic": "",
 "payload":
"{\"baseStations\":[{\"bsEui\":812106946544412000,\"eqSnr\":18.389999389648438,\"mode\":\"ulp\",\
"profile\":\"eu1\",\"rssi\":-
59.70573806762695,\"rxTime\":1677148533954006000}],\"cnt\":533,\"components\":{\"temperature\":{\
"label\":\"\",\"unit\":\"°C\",\"value\":23.23},\"humidity\":{\"label\":\"\",\"unit\":\"%\",\"valu
e\":65.5}},\"data\":[9,19],\"dlAck\":false,\"dlOpen\":false,\"format\":0,\"meta\":null,\"response
Exp\":false,\"typeEui\":8121069193317515000}",
 "payloadType": "json",
 "x": 310,
 "y": 360,
 "wires": [
 [
 "6018209582f4d5d9"
]
]
 },
 {
 "id": "513cf183ab494b0d",
 "type": "mqtt out",
 "z": "84d6f5ec8bdf3a8d",
 "name": "",
 "topic": "v1/devices/me/telemetry",
 "qos": "",
 "retain": "",
 "respTopic": "",
 "contentType": "",
 "userProps": "",
 "correl": "",

31

Appendix

 "expiry": "",
 "broker": "6b5d5d9152c7526e",
 "x": 930,
 "y": 280,
 "wires": []
 },
 {
 "id": "f55004ed3cd17e0e",
 "type": "debug",
 "z": "84d6f5ec8bdf3a8d",
 "name": "BS Message",
 "active": true,
 "tosidebar": true,
 "console": false,
 "tostatus": false,
 "complete": "payload",
 "targetType": "msg",
 "statusVal": "",
 "statusType": "auto",
 "x": 370,
 "y": 220,
 "wires": []
 },
 {
 "id": "07827416c33c117e",
 "type": "mqtt-broker",
 "name": "Basestation",
 "broker": "ava01b5.guests.iis.fhg.de",
 "port": "1883",
 "clientid": "",
 "autoConnect": true,
 "usetls": false,
 "protocolVersion": "4",
 "keepalive": "60",
 "cleansession": true,
 "birthTopic": "",
 "birthQos": "0",
 "birthPayload": "",
 "birthMsg": {},
 "closeTopic": "",
 "closeQos": "0",
 "closePayload": "",
 "closeMsg": {},
 "willTopic": "",
 "willQos": "0",
 "willPayload": "",
 "willMsg": {},
 "userProps": "",
 "sessionExpiry": ""
 },
 {
 "id": "6b5d5d9152c7526e",
 "type": "mqtt-broker",
 "name": "Thingsboard",
 "broker": "Thingsboard",
 "port": "1883",
 "clientid": "",
 "autoConnect": true,
 "usetls": false,
 "protocolVersion": "4",
 "keepalive": "60",
 "cleansession": true,
 "birthTopic": "",
 "birthQos": "0",
 "birthPayload": "",
 "birthMsg": {},
 "closeTopic": "",
 "closeQos": "0",
 "closePayload": "",
 "closeMsg": {},
 "willTopic": "",
 "willQos": "0",
 "willPayload": "",
 "willMsg": {},
 "userProps": "",
 "sessionExpiry": ""
 }
]

32

Appendix

5.1.5
Node-Red Configuration Grafana

[
 {
 "id": "cda02be842129a63",
 "type": "tab",
 "label": "Grafana Data Flow",
 "disabled": false,
 "info": ""
 },
 {
 "id": "eb40d63af64b7495",
 "type": "mqtt in",
 "z": "cda02be842129a63",
 "name": "Basestation",
 "topic": "mioty/+/+/uplink",
 "qos": "2",
 "datatype": "json",
 "broker": "25fa4437ed512bbe",
 "nl": false,
 "rap": true,
 "rh": 0,
 "inputs": 0,
 "x": 190,
 "y": 280,
 "wires": [
 [
 "c4c277f9f2494228",
 "4d16f63252ed20c9"
]
]
 },
 {
 "id": "4d16f63252ed20c9",
 "type": "function",
 "z": "cda02be842129a63",
 "name": "Conversion and EUI check",
 "func": "\nvar eui = \"8121069193317515000\"; // In Decimal\n\nif
(String(msg.payload.typeEui) != eui) {\n return null;\n}\n\nvar values = {};\nfor (var name in
msg.payload.components) {\n var j = msg.payload.components[name];\n values[name] =
j.value;\n}\n\nreturn { payload: values };\n",
 "outputs": 1,
 "noerr": 0,
 "initialize": "",
 "finalize": "",
 "libs": [],
 "x": 580,
 "y": 280,
 "wires": [
 [
 "5a821bbf4f4083c0",
 "95eafe0459769668"
]
]
 },
 {
 "id": "5a821bbf4f4083c0",
 "type": "debug",
 "z": "cda02be842129a63",
 "name": "Published Data",
 "active": true,
 "tosidebar": true,
 "console": false,
 "tostatus": false,
 "complete": "payload",
 "targetType": "msg",
 "statusVal": "",
 "statusType": "auto",
 "x": 820,
 "y": 220,
 "wires": []
 },
 {
 "id": "98892ade85cc9a4d",
 "type": "inject",
 "z": "cda02be842129a63",
 "name": "",
 "props": [
 {
 "p": "payload"

33

Appendix

 }
],
 "repeat": "",
 "crontab": "",
 "once": false,
 "onceDelay": 0.1,
 "topic": "",
 "payload":
"{\"baseStations\":[{\"bsEui\":812106946544412000,\"eqSnr\":18.389999389648438,\"mode\":\"ulp\",\
"profile\":\"eu1\",\"rssi\":-
59.70573806762695,\"rxTime\":1677148533954006000}],\"cnt\":533,\"components\":{\"temperature\":{\
"label\":\"\",\"unit\":\"°C\",\"value\":23.23},\"humidity\":{\"label\":\"\",\"unit\":\"%\",\"valu
e\":65.5}},\"data\":[9,19],\"dlAck\":false,\"dlOpen\":false,\"format\":0,\"meta\":null,\"response
Exp\":false,\"typeEui\":8121069193317515000}",
 "payloadType": "json",
 "x": 310,
 "y": 360,
 "wires": [
 [
 "4d16f63252ed20c9"
]
]
 },
 {
 "id": "c4c277f9f2494228",
 "type": "debug",
 "z": "cda02be842129a63",
 "name": "BS Message",
 "active": true,
 "tosidebar": true,
 "console": false,
 "tostatus": false,
 "complete": "payload",
 "targetType": "msg",
 "statusVal": "",
 "statusType": "auto",
 "x": 370,
 "y": 220,
 "wires": []
 },
 {
 "id": "95eafe0459769668",
 "type": "influxdb out",
 "z": "cda02be842129a63",
 "influxdb": "b7d663d984df12d2",
 "name": "Inlfux",
 "measurement": "sensor-1",
 "precision": "",
 "retentionPolicy": "",
 "database": "database",
 "precisionV18FluxV20": "ms",
 "retentionPolicyV18Flux": "",
 "org": "mioty-tests",
 "bucket": "sensors",
 "x": 890,
 "y": 280,
 "wires": []
 },
 {
 "id": "25fa4437ed512bbe",
 "type": "mqtt-broker",
 "name": "Base Station",
 "broker": "ava01b5.guests.iis.fhg.de",
 "port": "1883",
 "clientid": "",
 "autoConnect": true,
 "usetls": false,
 "protocolVersion": "4",
 "keepalive": "60",
 "cleansession": true,
 "birthTopic": "",
 "birthQos": "0",
 "birthPayload": "",
 "birthMsg": {},
 "closeTopic": "",
 "closeQos": "0",
 "closePayload": "",
 "closeMsg": {},
 "willTopic": "",
 "willQos": "0",
 "willPayload": "",
 "willMsg": {},
 "userProps": "",

34

Appendix

 "sessionExpiry": ""
 },
 {
 "id": "b7d663d984df12d2",
 "type": "influxdb",
 "hostname": "127.0.0.1",
 "port": "8086",
 "protocol": "http",
 "database": "database",
 "name": "Inlfux",
 "usetls": false,
 "tls": "",
 "influxdbVersion": "2.0",
 "url": "http://influxdb:8086",
 "rejectUnauthorized": true
 }
]

