

Internal

GETTING STARTED WITH MIOTYTM

Tutorial for setting up and operating a MIOTYTM
Network

F RA U NH OFE R I N ST IT UT E F OR I N T E G RA TE D C I RCU I TS I I S

2

GETTING STARTED WITH MIOTYTM

Tutorial for setting up and operating a MIOTYTM
Network

Fraunhofer Institute for Integrated Circuits IIS, Erlangen

Johanna Gros

© Fraunhofer IIS
Erlangen, October 2022

All images: © Fraunhofer IIS

3

Contents

Contents

Contents ... 3

1 General Information .. 5
1.1 Symbols within the document ... 5
1.2 Components and supplies .. 5

2 Overview of the MIOTY™ System .. 8
2.1 Introduction to MIOTY™ .. 8
2.1.1 What makes MIOTY™ so unique? .. 8
2.1.2 Application of MIOTY™ .. 9
2.2 How do the MIOTY™ System and its underlying technology work? 9
2.2.1 Data Chain and Key Components ... 10
2.2.2 Telegram splitting as unique technology and advantageous feature of
 MIOTY™ .. 11

3 End Point setup: Programming and commissioning of the sensor nodes 13
3.1 LZE MIOTY™ M3B magnolinq MAKERBOARD .. 13
3.1.1 Getting Started: Preparatory steps for programming and flashing the
 board .. 13
3.1.2 Writing the program .. 15
3.1.2.1 Writing Sketches with the Arduino IDE .. 15
3.1.2.2 The Program code .. 15
3.1.3 Flashing and placement of the board .. 19
3.2 Arduino Pro Mini equipped with RFM69W transmitter module and Bme .
 weather data sensor .. 20
3.2.1 Getting Started: Hardware setup ... 21
3.2.2 Preparations for programming the board ... 21
3.2.1 The Program Code ... 22
3.2.2 Flashing and placement of the board .. 25

4 Base Station setup and Connecting Endpoints: AVA Gateway start-up... 28
4.1 Context with the data transmission path .. 28
4.2 Base station setup and installation .. 29
4.3 Register new Endpoints ... 29
4.4 Data reception ... 31
4.5 Troubleshooting: Control of the received data .. 31

5 Correct representation of data on the Base station with the help of
blueprints ... 34

5.1 Introduction to Blueprints and the Json data format 34
5.1.1 Why do we use Blueprints? ... 34
5.1.2 What is a Blueprint? ... 34
5.1.3 What is a TypeEUI and what is it needed for? ... 35
5.1.4 Summary Example Blueprint.. 35
5.1.5 How does the Json Data Format work? ... 35
5.2 Creating a Blueprint ... 36
5.2.1 Architeture ... 37
5.2.1.1 Component Datatypes ... 39
5.2.1.1 Function Literals ... 39
5.2.2 Create your own blueprint: Example Blueprint from our project 40

4

Contents

5.3 Adding and Using Blueprints in the Base Station Application Center 41
5.3.1 Adding a Blueprint to the Base Station .. 42
5.3.2 Assigning a Blueprint to an End Node .. 43
5.3.3 Troubleshooting ... 44

6 Data transfer via MQTT and display on the IoT platform 45
6.1 Data transfer to ThingsBoard ... 45
6.2 The IoT Platform ThingsBoard ... 46
6.2.1 Using the Platform ... 46
6.2.2 Adding new devices ... 46
6.3 Introduction to MQTT .. 47
6.3.1 Why do we use MQTT? .. 47
6.3.2 What Is MQTT? .. 47
6.3.2.1 Publish/ Subscribe Architecture ... 48
6.3.2.2 Client/ Broker Model ... 48
6.3.2.3 Topics ... 48
6.3.2.4 Summary Example ... 49
6.3.2.5 MQTT and our MIOTY™ Project ... 50
6.4 Implementation of the MQTT Clients… ... 50
6.4.1 … using the Paho Python Client ... 51
6.4.1.1 Preparatory Steps .. 51
6.4.1.2 The Program Code ... 52
6.4.1.3 Executing the Program ... 55
6.4.1.4 Troubleshooting ... 55
6.4.2 … using the Paho Python Client in connection with Eclipse Mosquitto .. 56
6.5 Create your own IoT-Dashboard: Data Visualization 57

7 Appendix .. 58
7.1 Blueprint for the MIOTY™ M3B magnolinq MAKERBOARD 58
7.2 Blueprint for the Arduino Pro Mini sensor node 58
7.3 Code for the MIOTY™ M3B magnolinq MAKERBOARD sensor node 59
7.4 Overview of the most relevant functions of the Mioty_at_client_c and
 m3b_helper library .. 61
7.5 Code for the Arduino Pro Mini sensor node .. 61
7.6 Overview of the most relevant functions of the ts_unb_node library 63
7.7 Code for the Paho-based MQTT Client to receive Data 64
7.8 Code for the Paho-based MQTT Client to receive and publish Data 65
7.9 Code for the Mosquitto-based MQTT Client to receive and publish
 Data .. 66
7.10 Overview of the most relevant Functions of the Paho Client Class 67

5

General Information

1
General Information
This document is intended for both commercially active system architects and all other
(private) persons who wish to develop and use a MIOTYTM system.
It is intended to help in setting up and operating an own MIOTYTM based network. Illustrated
and detailed instructions based on an exemplary setup give an overview of which hardware
as well as software components are necessary and how they can be successfully configured,
programmed and interconnected. Additional explanations and definitions provide further
background information. Furthermore, additional video instructions are available for some
practical set-up steps.

The "MIOTYTM project" described in this tutorial uses the data of a weather sensor as an
example to show the system structure. The manual covers the following topics:

• Overview of the MIOTYTM System: Basic structure and technical background of MIOTYTM

• End Point Setup: Configuration, programming and commissioning of the nodes

• Base Station Setup: Configuration and commissioning of the Base Station

• Creation and use of Blueprints

• Data transfer via MQTT and display on the IoT platform

The general structure of each MIOTYTM network is essentially the same, however, the explicit
setup presented in the “MIOTYTM Project” can also be transferred to other
sensors/components and use cases. The exact components needed for this tutorial are listed
in section 1.2.

1.1
Symbols within the document

Text sections and chapters are labeled according to their content and the meaning to the
setup of the project:

1.2
Components and supplies

The following overview lists all required hardware components of the MIOTYTM project
(either the variant with the Arduino Pro Mini or the M3B magnolinq Makerboard should be
chosen; see sections 3.1 and 3.2 for more information):

Setup step

Theoretical aspects relevant for the setup

Additional information and background knowledge

Warning/ Caution/ Attention

additional setup video available

6

General Information

M3B magnolinq Makerboard-Node-Variant:

① MiotyTM M3B magnolinq Makerboard (left with antenna socket and right with
 TTL interface)
② USB 2.0 to Serial TTL Converter
③ SMA Antenna

Arduino Pro Mini-Node-Variant:

Figure 1: Components for the M3B magnolinq Makerboard-Node-Variant

Figure 2: Components for the Arduino Pro Mini-Node-Variant

https://shop.lze-innovation.de/products/mioty-magnolinq-makerboard-m3b

7

General Information

① Arduino Pro Mini
② BME280 Sensor
③ HOPERF RFM69W Transceiver Module
④ USB to UART TTL Cable Module
⑤ SMA Antenna
⑥ PCB RP-SMA male female plug RF Adapter Connector
⑦ Cable

 For the assembly the additional supplies are necessary as well:

• Tin solder

• Soldering iron

For a complete overview of the finished module, as well as instructions on how to assemble
it, see section 3.2.1.

Both Variants:

① miotyTM Gateway AVA
② SMA Antenna
③ Plugin USB C Raspberry PI Power supply
④ LAN cable with dhcp support

⑤ Computer with internet connection

Any software that is required is addressed in the corresponding part of the tutorial. There
you will also find links and installation/registration guides and instructions.

Figure 3: Components and supplies for the Base Station

https://www.weptech.de/en/products/mioty/mioty-gateway-ava.html

8

Overview of the MIOTY™ System

2
Overview of the MIOTY™ System
In this chapter, the MIOTY™ system and its technology are presented in their respective
context. Section 2.1 presents the motivation, special features and advantages of the MIOTY™
technique compared to conventional techniques and shows first concrete application
possibilities. Section 2.2 goes into more detail about the functioning and the underlying
technical structure of the system and clarifies first basic backgrounds with regard to an own
successful setup.

2.1
Introduction to MIOTY™

In the digital age, not only the number of Internet-capable devices is increasing, but also the
possibility of wirelessly networking people, processes, data, devices, or entire plants. The
latter, often as part of a smart factory, are increasingly sending, communicating, or
exchanging time-critical measured values and sensor data in connection with the growing
importance of Industry 4.0. The basis for this functionality is formed by wireless networks,
which are characterized above all by flexible, robust, and cost-efficient solutions and
infrastructures. LPWANs (Low Power Wide Area Network) are particularly advantageous for
this, due to their beneficial properties such as high network coverage or low energy
consumption. MIOTY™ is an LPWAN technology for the Internet of Things. The technology
can be used to network a large number of sensors over long distances in an energy-efficient,
robust and reliable manner. It combines the strengths of conventional LPWAN systems with
advanced technology to further optimize its functionality and features. This results in a wide
range of application domains and fields.

2.1.1
What makes MIOTY™ so unique?

MIOTY™ (= My IoT) is an LPWAN technology in the category of wireless network solutions.
These are particularly well suited for private IoT (Internet of Things) applications. Due to its
advanced and innovative protocol design, it not only ideally meets the demands and
challenges of intelligent networking people and things in the Internet of Things, but also goes
beyond conventional LPWAN solutions with its functions. In addition to a high range and
scalability, the MIOTY™ system also offers much better transmission security and robustness
against interference or transmission errors, thanks to its specially developed telegram
splitting technology. This makes it possible to meet even demanding (industrial) IoT
requirements. For a complete overview of MIOTY™ ’s features see Table 1. Vendor-neutral
software as well as commercial hardware designed directly for MIOTY™ use, enable the
design of a cost-efficient IoT architecture by means of maximum flexibility and minimum
complexity.

Overview of MIOTY™´s technical key qualities:

Huge network capacity Current networks reach up to 3.3 mio messages/day
with only one base station, future systems will be
expanded

Extensive transmission range up to 15 km in flat terrain
up to 5 km in urban centers

9

Overview of the MIOTY™ System

More information regarding the benefits of MIOTY™ and an overview can be found starting
on p. 6 in the official document “MIOTY™ - Physical Layer Technology” or online.

2.1.2
Application of MIOTY™

Due to its versatility, MIOTY™ can be used in a wide variety of application areas. In addition
to traditional applications in the industry (4.0), such as cost-efficient and reliable monitoring
of production plants, the MIOTY™ system is also used in mining and underground
construction due to its robustness, as it can provide the high level of safety required there.
Its wide coverage and efficiency also allow it to be used in oil and gas production and in
agriculture. Here, the technology can be used to better monitor fields while helping to
conserve resources and protect biodiversity. However, MIOTY™ is also used in the context of
building management and urban planning: it not only enables the monitoring, control, and
regulation of buildings, but can also contribute to the implementation of a smart city concept.
A more detailed overview and additional information can be found on Fraunhofer’s official
website.

MIOTY™'s flexibility and multiple benefits therefore allow it to be adapted to many
circumstances and use cases. In addition to such large-scale projects, the technology thus
also offers the possibility for own, individual ideas and projects in the private or educational
area with simple and inexpensive means. Be it to realize smaller projects such as an irrigation
system for the home garden or a simple temperature monitoring, as described as an example
in this tutorial.

2.2
How do the MIOTY™ System and its underlying technology work?

The MIOTY™ system and its functionality are largely determined by its architecture. It
describes the various hardware and software components within the system. These can, for
example, be connected to each other in different ways, communicate or exchange data and
thus fulfill various functions and tasks. In addition to forming the data chain, they also define
the individual communication layers that represent the various functional levels of such a
networked system. A basic understanding of the interrelationships and backgrounds of the
individual components and the overall system can thus make it much easier to set up an own
project.

Minimal power consumption up to 20 years battery lifetime

Unique mobile communication nodes operate at up to 120 km/h velocity

Quality-of-service high interference immunity in a crowded spectrum,
deep indoor penetration and multi-layer security

Worldwide operation global license-free sub-GHz band

New standard ETSI standard TS 103357 published in June 2018

Table 1: Overview of MIOTY™ 's technical key qualities

https://www.iis.fraunhofer.de/content/dam/iis/de/img/Forschungsfelder/LV/VernetzungundIdentifikation/Technologien/mioty/Mioty-PhysicalLayerTechnology_rev1_final.pdf
https://www.iis.fraunhofer.de/en/ff/lv/net/telemetrie.html
https://www.iis.fraunhofer.de/en/ff/lv/net/telemetrie.html#Application
https://www.iis.fraunhofer.de/en/ff/lv/net/telemetrie.html#Application

10

Overview of the MIOTY™ System

2.2.1
Data Chain and Key Components

Figure 4: Data Chain of the MIOTY™ System

Figure 4 provides an overview of the entire data chain in a typical MIOTY™ deployment and
as it is found in our project. The key components and their functions are explained in more
detail below, also in relation to the MIOTY™ project:

• Remote End-points/ End-nodes with sensor

• Each device is characterized and distinguished by a unique EUI (Extended Unique
Identifier; typically printed on the label of your end node device or has to be
acquired additionally in case of own designed modules; see the official guidelines
for more information).

• The built-in or connected sensors capture and measure field data such as
environmental parameters or machine KPIs (key performance indicators).

• After that, the data is processed by the node's CPU and sent from the transmitter
module to the base station at regular intervals in analog form over the air using
MIOTY™ Telegram Splitting technology.

• A wide variety of node configurations can be supported for MIOTY™ projects. In this
tutorial, the use of an Arduino Pro mini in connection with a Bme-sensor and the
RFM69W Transceiver Module and the M3B magnolinq Makerboard, which was co-
designed especially for MIOTY™, is presented.

• Base station

• The base station receives and collects all messages from the nodes registered with
it. In general, it can be connected to any number of nodes.

• It processes and decrypts the network control data contained in the messages and
forwards the user data to the backend, which consists of the service and application
center.

• It is also responsible for generating and sending messages to bidirectional nodes
that can receive messages as well.

• A MIOTY™ network can consist of multiple base stations, for example to cover a
larger area. In this case, the same message from a node can be received by multiple
base stations.

• For our project we use the MIOTY™ Gateway AVA. In addition to the pure
functionalities of the base station, it comes with a local backend for stand-alone
usage (an optional reconfiguration to external backends is possible if required) and
thus facilitates usability and application.

• The station also features a web interface that can be accessed via the local network
and used to gain insight into data traffic and make settings and configurations.

https://standards.ieee.org/wp-content/uploads/import/documents/tutorials/eui.pdf

11

Overview of the MIOTY™ System

• Service Center

• The Service Center is responsible for device and network management as well as
security and key management of the network-level cryptography.

• It coordinates the messages within the system, for example by forwarding relevant
messages to the Application Centers, deleting repeating messages or, in the case of
bidirectional connections and several base stations, by selecting the Gateway that
responds to the node and scheduling its downlink data.

• There is always only one service center per MIOTY™ system where all devices are
registered. It connects one or multiple Gateways to one or multiple Application
Centers. From here they are also managed and controlled.

• The Service Center functions required for our project are already pre-implemented
on the AVA Gateway and run automatically after its installation. There is a possibility
to configure the base station and use an external service center, e.g. when using
multiple AVA gateways with pre-implemented service centers. The data can then be
processed collectively by one gateway.

• Application Center

• The Application Center serves as a point of contact to each end user or application
operator. Accordingly, it can exist several times within a MIOTY™ system.

• From here, new nodes are registered for the entire system with the help of the
device EUIs for service and application center.

• This enables the service center to distinguish which data from which end-node the
individual application centers or their end users are interested in and to forward
only these corresponding ones as a multi-tenant system.

• When receiving messages from the service center, the application center encrypts
and decodes the user data (by means of data format description/ blueprints), which
is then forwarded to the application platform (e.g. via MQTT protocol).

• Similar to the Service Center, the required functions are already pre-implemented
on our base station and can be accessed via the web interface. Again, there is the
possibility of configuration to an external component.

• Applications or Application platforms

• Applications or application platforms represent any server or cloud computing
system whose core functions are data storage and analysis.

• Received data can be examined here for patterns or visualized more vividly to make
predictions and execute timely responses.

• In our project, we use the open-source IoT platform ThingsBoard for this purpose.

Further information and background on this can also be found in the official document from
page 7 onwards. For descriptions and explanations of specific functions and the use or
commissioning of concrete components, see the corresponding chapters of this manual.

2.2.2
Telegram splitting as unique technology and advantageous feature of MIOTY™

MIOTY™ distinguishes itself from other comparable solutions through its system design,
which is particularly advantageous for IoT applications. Traditional LPWAN systems
constantly have to deal with network-related quality losses of the data. On the one hand, the
low available bandwidth and the desire for higher coverage increase transmission times. On
the other hand, the data traffic takes place in the license-free spectrum, which is why there
are often many users. This all increases the probability of interference and interruption of
the signal when the channel is used more than once.

https://www.iis.fraunhofer.de/content/dam/iis/de/img/Forschungsfelder/LV/VernetzungundIdentifikation/Technologien/mioty/Mioty-Mac_and_Higher_Layers_final.pdf

12

Overview of the MIOTY™ System

The Telegram splitting solution allows these challenges to be overcome. Instead of
transmitting the entire message in one piece, each packet (a telegram) is split into numerous
sub-packets and these are distributed over time and frequency. This reduces the
transmission time of each individual packet and thus the probability that collisions occur. If
they do occur nevertheless, only a few parts of the message are affected compared to before
(this advantage is illustrated by Figure 5).

Figure 5: Interferences with a classic LPWAN and a system with Telegram splitting

Additional forward error correction allows for complete network reliability - even if only half
of the data packets arrive at the base station. As a result, this exceptional system design
provides unrivaled quality of service for critical industrial IoT applications where network
quality is a top priority.

In our system, this is rendered by the technical realization and special programming of the
node and base station hardware. Further information regarding telegram splitting can also
be found in the official document “MIOTY™ - Physical Layer Technology”.

https://www.iis.fraunhofer.de/content/dam/iis/de/img/Forschungsfelder/LV/VernetzungundIdentifikation/Technologien/mioty/Mioty-PhysicalLayerTechnology_rev1_final.pdf

13

End Point setup: Programming and

commissioning of the sensor nodes

3
End Point setup: Programming and commissioning of the sensor
nodes
End nodes represent the starting point of the data transmission chain. Usually in combination
with sensors, they measure and record critical data for analysis or monitoring, which can then
in a later step be further processed and visualized (see 2.2.1 for more detailed information).
Depending on the objectives and structure of the project, a wide variety of hardware
components can be used for this purpose. In this manual, two of these alternatives are
presented: the specially for MIOTY™ developed M3B magnolinq MAKERBOARD, which
facilitates the entry into the MIOTY™ project by already existing functions and peripheral
components or interfaces (see section 3.1) and an open source approach by means of an
Arduino board in connection with a Bme sensor and corresponding transmitting components
(see section 3.2).
Depending on the project, other prefabricated MIOTY™-related end node options and
sensors can also be found in the MIOTY™ -Alliance portfolio.

3.1
LZE MIOTY™ M3B magnolinq MAKERBOARD

The specially developed LZE MIOTY™ M3B magnolinq Makerboard, M3 Board for short,
makes it easier to get started using MIOTY™ and then implementing projects thanks to its
structure and existing components. The embedded, self-programmable microcontroller not
only allows the implementation of a variety of individual projects, but the development and
programming of the board is easily possible with the help of the widely used and well-
documented open-source Arduino IDE. In addition, peripheral components or sensors for
standard functions are already integrated. The board can nevertheless also be expanded as
desired through external interfaces and therefore individually configured for a wide range of
applications. More details and information about the board or its technical features can be
found in the MIOTY™ -Alliance Portfolio or on the LZE Product Page. For an alternative open-
source approach, which requires a partial self-assembly of the board, see also chapter 3.2.

3.1.1
Getting Started: Preparatory steps for programming and flashing the board

Since the M3 board already has some built-in sensors like the SHT31 temperature and
humidity sensor or the MS5637 barometric pressure sensor, the hardware for our MIOTY™
project is complete and no further peripheral components have to be connected. However,
in order to be able to effectively use the board as a sensor node as the next step, a suitable
program code must first be written and then flashed into the board's memory. This requires
some preparatory steps:

• Install the Arduino IDE (tested with v1.8.16):

• with the help of a suitable integrated development environment (IDE) the software
for our board can be written and uploaded quite easily via the USB port

• the latest version can be downloaded from the download page and installed in a few
simple steps with the help of the detailed installation instructions for each operating
system (see Windows, Linux or macOS)

• Install the STM32CubeProgrammer:

• Not all boards are supported by the Arduino IDE from the start. Since the core of the
M3 board belongs to the STM32 microcontroller family, extra software is needed to
program it.

• the latest version for different operating systems can be found here

https://mioty-alliance.com/portfolio/hardware/
https://mioty-alliance.com/projects/lze-mioty-m3b-magnolinq-makerboard/?portfolioCats=33%2C34%2C30%2C32%2C31
https://shop.lze-innovation.de/collections/early-access/products/mioty-magnolinq-makerboard-m3b
https://www.arduino.cc/en/software
https://docs.arduino.cc/software/ide-v1/tutorials/Windows
https://docs.arduino.cc/software/ide-v1/tutorials/Linux
https://docs.arduino.cc/software/ide-v1/tutorials/macOS
https://www.st.com/en/development-tools/stm32cubeprog.html
https://www.st.com/en/development-tools/stm32cubeprog.html

14

End Point setup: Programming and

commissioning of the sensor nodes

• Add stm32duino to Board Managers:

• After installing the latest version of the STM32CubeProgrammer, the board itself
has to be installed in the Arduino IDE to make it accessible via its board manager
and compatible with the Arduino software.

• This requires several steps, which are explained in the paragraph "Install STM32
Cores" on the following Github page. The board can then be selected and the
previously installed programming software is automatically used during flashing.

• general information about adding new boards to the Arduino IDE can be found here
(the stm32duino counts as third party core).

• Add to library manager:

• In programming, libraries are generally used to provide additional program
resources and functionalities such as functions, subroutines, configuration data or
documentation as a collection, in form of prewritten code. In order to easily address
and use the various sensors of the M3 board, it is necessary to include their
corresponding libraries. To make this possible, they have to be added to the Library
Manager of the Arduino IDE.

• Manually add Libraries as zip file: Many libraries can be added very easily directly
via the library manager. However, this can lead to compatibility issues between
different library versions and prebuilt sample source code, which therefore this is
not the best option. It is hence recommended to import the required libraries
manually as a zip file. This should be done as follows:

• Download the zip file from the corresponding Github page via the Code①
and then Download ZIP② buttons as seen in Figure 6:

 Figure 6: Manually adding Libraries in the Arduino IDE

• Via the menu bar navigate through Sketch > Include Library > Add .ZIP
Library…:

• Navigate to the library’s .zip file location and open it.

• general information about adding libraries to the Arduino IDE can also be found here

• The following libraries are needed for the MIOTY™ project:

• SparkFun MS5637 Barometric Pressure Sensor Library (v1.0.1)

• SHT31 temperature and humidity sensor library (v0.3.4)

• (ADXL362 Micropower 3-axis accelerometer library; not used for our MIOTY™
project but can add further functionality) (v1.5.0)

• MIOTY AT-Client: Implemented functions enable MIOTY™ -capable end
nodes to send data to and communicate with the base station using MIOTY™
technology.

• MIOTY m3b_helper: contain functions to facilitate the use and addressing of
the M3B board and its hardware

https://github.com/stm32duino/wiki/wiki/Getting-Started
https://github.com/stm32duino/wiki/wiki/Getting-Started
https://docs.arduino.cc/learn/starting-guide/cores
https://support.arduino.cc/hc/en-us/articles/5145457742236-Add-a-library-to-Arduino-IDE?queryID=ffbdc0027addda5f633e7aa732f34e5f
https://github.com/sparkfun/SparkFun_MS5637_Arduino_Library
https://github.com/RobTillaart/SHT31
https://github.com/annem/ADXL362
https://github.com/mioty-iot/mioty_at_client_c
https://github.com/mioty-iot/m3b_helper

15

End Point setup: Programming and

commissioning of the sensor nodes

➔ The above links also contain further information, documentation, sample code and
other relevant/needed resources if required.

• Upload Settings

• as last step the default settings of the IDE must be adapted to the board

• for this the following items are to be selected under the Tools path:

• Board > Generic STM32L0 Series

• Board Part Number > Generic L072RBTx

• USART Support > Enabled (no generic, serial)

• Upload Method > Stm32CubeProgrammer (Serial)

Corresponding information can also be found on the m3b_helper Github page.

3.1.2
Writing the program

After all preparations for the successful development of the board as described in section
3.1.1 have been made, we can start with the actual coding. For this we use the Arduino IDE.

3.1.2.1
Writing Sketches with the Arduino IDE

The Arduino IDE is especially comfortable to use because it hides many complex operations
or even takes them over completely. Thus, a board-independent programming is possible
without the corresponding hardware knowledge. To get yourself familiar with writing
programs and the basic elements of the Arduino IDE, please check out the section “Writing
Sketches” on the following Arduino page. Here all relevant aspects and buttons concerning
the interface are explained, allowing to write our own first programs/ sketches afterwards.
Additionally, the page offers further comprehensive introductory documentation to the IDE
if required.

3.1.2.2
The Program code

This section introduces the M3 board sensor node program for the successful transmission
of weather data using MIOTY™ to a base station. The programming language is C/C++, but
with some Arduino specific features, which will be shown later. On the Internet there are
numerous introductions and courses for writing C programs. If there should be a demand,
see for example W3Schools or educative.
The code can generally be divided into individual segments: head area, setup-function and
loop-function. All relevant functions and program aspects are described hereafter. In the
appendix the complete code can be found as well. The code can be transferred depending
on the application and your wishes, all sections to be adjusted are marked accordingly.

3.1.2.2.1
Head Area

This preparatory code segment is used to include all the required libraries into the sketch, to
create some important objects and to generate assignments.
To be able to address the sensors integrated on the board as well as to use MIOTY™ and M3
board specific functionalities, some libraries have to be integrated into the sketch first:

// Libraries for Sensor use, MIOTY and M3 Board
#include <miotyAtClient.h>
#include "m3bDemoHelper.h"

https://github.com/mioty-iot/m3b_helper
https://docs.arduino.cc/software/ide-v1/tutorials/Environment#writing-sketches
https://www.w3schools.in/c-programming/functions
https://www.educative.io/courses/learn-c-from-scratch?affiliate_id=5073518643380224

16

End Point setup: Programming and

commissioning of the sensor nodes

#include "m3b_sensors/si1141.h"
#include <SHT31.h>
#include <SparkFun_MS5637_Arduino_Library.h>

Next, we enable serial communication and data output directly in the IDE via serial monitor,
using the respective library (see the following page for more detailed information).
Afterwards, we can define two instances of SoftwareSerial objects, one for debugging

purposes and the other for bidirectional MIOTY™:

//enable Serial Monitor
#include "SoftwareSerial.h"

// Debug Serial
SoftwareSerial SerialM3B(PA10, PA9);
// Mioty Bidi Stamp Serial
SoftwareSerial SerialMioty(PC11, PC10);

As the sensors use I2C/TWI communication, it must also be enabled (see Wire for more
information). To address the sensors in the code, they are declared next. The same applies
to the M3 board. The instance Wire2 furthermore facilitates the later port assignment.

//enable I2C
#include <Wire.h>

//Sensor Declaration
TwoWire Wire2(PB9, PB8);

MS5637 ms5637;
SHT31 sht31;
SI1141 si1141;

M3BDemoHelper m3bDemo;

Next, we declare an input variable for EUI and Network Key to be able to adjust them
comfortably later (below are sample addresses).

// input new EUI
uint8_t eui64[8] = {0x70, 0xb3, 0xd5, 0x67, 0x70, 0x11, 0x14, 0x47};
// input new Network Key
uint8_t nwKey[16]={0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

0x01, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};

Finally, we define a symbolic constant. This allows us later to restrict and conditionally
compile certain parts of the source code. This is necessary because constantly resetting the
network key and the required attach and detach operations can cause problems in the base
station. Each time the module is reset, the setup() function (and the setting of the key) is
executed again. To avoid this, the define function should be commented after the first flash
of the board and the code should be reloaded onto the device. This way the corresponding
code elements are not executed again.

//Conditional compilation to set the network key once at the beginning,
should be executed only ONCE and commented afterwards

#define SET_NETWORKKEY

https://docs.arduino.cc/learn/built-in-libraries/software-serial
https://www.arduino.cc/reference/en/language/functions/communication/wire/

17

End Point setup: Programming and

commissioning of the sensor nodes

3.1.2.2.2
Setup-Function

The Setup() function is a special feature of the Arduino IDE. It is called only once at the
beginning of the code execution (e.g. after reset of the board) and used to initialize variables,
to set pins, etc.
In the setup() function we first start with some function calls to set the data rate of the serial
monitors and some already defined configurations of the M3 board.

 m3bDemo.begin();
 SerialM3B.begin(9600);
 SerialMioty.begin(9600);

Afterwards we initialize the sensors with their corresponding data and pins (for a
corresponding overview see the code beginning). This function can also be used to detect
malfunctions or connection interruptions.

 //initialize sensors
 Wire2.begin();
 if (ms5637.begin(Wire2) == false)
 {
 SerialM3B.println("MS5637 sensor did not respond. Please check

wiring.");
 while(1);
 }
 sht31.begin(0x44, &Wire2);
 si1141.begin(&Wire2);

To be able to receive the data in the base station later, a unique network key must be defined
for each node. If changes are necessary or the node is to be initialized at the beginning, this
is done using the following section. To reassign the EUI or the network key, the node must
first be disconnected and then reconnected. By using appropriate functions from the
miotyAtClient library this can be implemented easily (the execution of the code is bound to
the previous definition of the SET_NETWORKKEY constant and should be run only once):

//Code for initial one-time setting of the network key, will only be
executed if the constant SET_NETWORKKEY was defined previously

#ifdef SET_NETWORKKEY

// assign new EUI and Network Key
 uint8_t MSTA; // status of mac state machine

// Local Dettach
 SerialM3B.print("Local Dettach:");
 miotyAtClient_macDetachLocal(&MSTA);

// Set-EUI
 // SerialM3B.print("Set EUI");
 // miotyAtClient_getOrSetEui(eui64, true);
 // SerialM3B.println("");

// Set-Network Key
 SerialM3B.print("Set Network Key");
 miotyAtClient_setNetworkKey(nwKey);
 SerialM3B.println("");

https://github.com/mioty-iot/mioty_at_client_c

18

End Point setup: Programming and

commissioning of the sensor nodes

// Local Attach - required only once
 SerialM3B.print("Local Attach:");
 miotyAtClient_macAttachLocal(&MSTA);
 SerialM3B.print("New Mac State:");
 SerialM3B.println(MSTA);
 SerialM3B.println("");
#endif

If the EUI is not known, it can be read out using the following code section (any 32
hexadecimal digits string can be specified as the network key):

// get Device EUI
 uint8_t eui64[8];
 miotyAtClient_getOrSetEui(eui64, false);
 SerialM3B.print("Device EuI ");
 for (int i = 0; i < 8;i++) {
 SerialM3B.print(eui64[i], HEX);
 SerialM3B.print("-");
 }

3.1.2.2.3
Loop function

After creating the setup() function, the actual program is executed here continuously in a
loop and thus gives the board its functionality.
In our code it consists of only one function call sendWeatherData(), with the help of which
the weather data is read out from the sensors and sent via MIOTY™ Technology. The blue
LED is used to visualize this.

digitalWrite(BLUE_LED, LOW);
 float temperature = sendWeatherData();
 digitalWrite(BLUE_LED, HIGH);

 delay(3000);

The called function sendWeatherData() first reads the weather data using suitable functions,
stores them in variables and can then send them via the predefined function
transmitWeather(). Using the print functions the data can also be read out via the serial
interface.

float sendWeatherData() {
// readout of weather data; humidity in %, temperature in °C, pressure in

hPa
 float pres=0., temp=0., hum=0.;
 temp = ms5637.getTemperature();
 pres = ms5637.getPressure();
 sht31.read();
 hum = sht31.getHumidity();
 uint16_t lux;
 si1141.readLuminosity(&lux);

 // serial Monitor
 SerialM3B.println(" ");
 SerialM3B.print("Pressure [hPa] ");
 SerialM3B.println(pres);
 SerialM3B.println(pres * 10);
 SerialM3B.print("Temperature [°C] ");
 SerialM3B.println(temp);
 SerialM3B.println((temp + 273.15)* 10);

19

End Point setup: Programming and

commissioning of the sensor nodes

 SerialM3B.print("Humidity ");
 SerialM3B.println(hum);
 SerialM3B.print("Luminosity (rawData) ");
 SerialM3B.print(lux);

 m3bDemo.transmitWeather(pres, temp, hum, lux);

 delay(4000);
 SerialM3B.println("");
 return temp;
}

The complete code can be found in the appendix. Here all used functions are explained again.
For further information and support please refer to the official Arduino website or the
corresponding documentation of MIOTY_AtClient or the m3b_helper on Github. Several
example sketches can also be found there.

3.1.3
Flashing and placement of the board

Once the code is ready, it can be flashed onto the board. There are a few things to be
considered, also in the subsequent placement of the node:

• Flashing the Board

• To enter the bootloader mode of the board, the ①bootloader switch should be
turned inwards, and the ②reset button should be kept pressed when connecting
the board to the PC according to Figure 7:

 Figure 7: M3 magnolinq Makerboard Pinout and Interfaces: Bootloader switch and Reset Button

• Connect your Device via UART (e.g. FTDI cable; make sure you connect the
appropriate pins and select the correct port in the IDE via Tools > Port)

• Upload the sketch

• Release the bootloader switch

• Press the reset button to start your sketch

https://docs.arduino.cc/
https://github.com/mioty-iot/mioty_at_client_c
https://github.com/mioty-iot/m3b_helper

20

End Point setup: Programming and

commissioning of the sensor nodes

➔ Now the program should run on the board and we can already read out the first data
via the serial monitor (if the board is reconnected to the PC after programming,
neither the switch has to be turned nor the button be pressed again). The output
should look similar to Figure 8 and provide us with information about the assignment
of EUI and Network Key③ as well as the sensor data④ itself:

 Figure 8: Serial Monitor Output of the M3 Board after flashing

• Correct placement of the device
In order to optimize your system’s operating range some additional aspects should be
considered as a last step:

• The antenna should be placed upright (vertically)

• the transmitting antenna should be kept at least 6cm, if possible 70cm away from
other objects, especially electrically conductive objects, walls and electronic devices
(e.g. PC, monitor, LED lighting, etc.)

• the antenna should not be placed near transmitting equipment (e.g. cell phones,
wireless headphones, etc.) as this may cause interference.

3.2
Arduino Pro Mini equipped with RFM69W transmitter module
and Bme weather data sensor

In comparison to the specially developed M3 board (see chapter 3.1), the MIOTY™ project
can also be realized as an open-source solution. With the help of suitable hardware
components and software provided by Fraunhofer1, the full functionality can be achieved,
and the design additionally creates an individual, independent, arbitrarily expandable, and
customizable module. The well documented microcontroller board can easily development
and programmed with the help of the widely used and also well-documented open-source
Arduino IDE. This tutorial introduces the setup and use of an example project with an Arduino

1 The Fraunhofer software supports Arduino systems with ATmega328p processor (8MHz and 16MHz) and the

Raspberry Pi Pico as well as the HopeRF RFM69hw transceiver.

21

End Point setup: Programming and

commissioning of the sensor nodes

Pro mini in combination with an RFM69W transmitter module and Bme weather data sensor.
However, many other configurations are possible as well. Basic information as well as
technical features and background information on the individual components used in our
example can be found on the corresponding pages: Arduino pro mini, RFM69HW transmitter
module and bme sensor.

3.2.1
Getting Started: Hardware setup

In order to use the Arduino as a sensor node, it must first be equipped with a sensor,
transmitter module and a corresponding antenna with socket. In our project, the RFM69HW
transmitter module and bme sensor are used. A possible connection configuration is shown
in Figure 9 (the I2C interface is used to drive the sensor):

s

Figure 10 shows what the completed
module might look like:

3.2.2
Preparations for programming the board

After the hardware has been properly prepared (see section 3.2.1), the next step is the
programming. For basic information when using the board for the first time, you can also find
hints and help in the Getting started Guide from Arduino. For this, first a few preparatory
steps and then the coding itself are necessary (depending on the components, the libraries
to be installed and the code must be adapted):

• Install the Arduino IDE:
 the latest version can be downloaded from the download page and installed in a few
simple steps with the help of the detailed installation instructions for each operating
system (see Windows, Linux or macOS)

Figure 9: Wiring of the Arduino Pro Mini module

Figure 10: Example of a completely soldered Arduino node module

https://docs.arduino.cc/retired/boards/arduino-pro-mini
https://github.com/LowPowerLab/RFM69
https://github.com/LowPowerLab/RFM69
https://github.com/adafruit/Adafruit_BMP280_Library
https://github.com/LowPowerLab/RFM69
https://github.com/LowPowerLab/RFM69
https://github.com/adafruit/Adafruit_BMP280_Library
https://docs.arduino.cc/retired/getting-started-guides/ArduinoProMini?queryID=29f7adf45b70b49d56ad7d35ddb96926
https://www.arduino.cc/en/software
https://docs.arduino.cc/software/ide-v1/tutorials/Windows
https://docs.arduino.cc/software/ide-v1/tutorials/Linux
https://docs.arduino.cc/software/ide-v1/tutorials/macOS

22

End Point setup: Programming and

commissioning of the sensor nodes

Figure 11: Adding Libraries in the Arduino IDE via search box

• Install the required libraries:

• TS-UNB-lib:

• The Fraunhofer Telegram Splitting - Ultra Narrowband Library ("TS-UNB-Lib")
is software that enables the MIOTY™ standard for wireless data transmission
in IoT.

• the RFM69W transmitter module functionality and software are already
integrated in it

• The library is provided as a .zip file and can therefore be easily included via
the path Sketch > Include Library < ADD .ZIP Library... (also see Manually add
Libraries as zip file)

• BME280 Library:

• library for our weather data sensor

• can either be added externally as a .zip file as well, or via the search box using
the path Tools < Manage Libraries.... (see Figure 11)

More information about adding libraries in the Arduino IDE can be found here.

3.2.1
The Program Code

The code with its most important functionalities and elements is presented below. An
overview of the most relevant functions of the TS-UNB library as well as all the related code
can be found in the appendix (if the code is to be adopted, the elements to be adjusted
accordingly are marked there). For more information and help on programming with the
Arduino IDE see the official guide.

//Libraries for Sensor use and MIOTY
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
//Import MIOTY TS-UNB-Node Library
#include <ArduinoTsUnb.h>

//enable Serial Monitor
#include "SoftwareSerial.h"

//enable I2C
#include <Wire.h>

https://github.com/mioty-iot/
https://github.com/adafruit/Adafruit_BME280_Library
https://docs.arduino.cc/software/ide-v1/tutorials/installing-libraries
https://docs.arduino.cc/software/ide-v1/tutorials/Environment

23

End Point setup: Programming and

commissioning of the sensor nodes

//Sensor Declaration
Adafruit_BME280 bme;

After all necessary libraries have been integrated and all required functionalities have been
enabled accordingly, the next code section can be used to define the individual node
configuration (only example values are shown here). In addition, the use of different RFM69
chip variants is very easy with the help of the namespace operator:

//Node specific configurations
//input new EUI
#define MAC_EUI64 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

0x07, 0x08
//input new Network Key
#define MAC_NETWORK_KEY 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10

//input Transmit power in dBm, please keep in mind local regulations
#define TRANSMIT_PWR 10

using namespace TsUnbLib::Arduino;
// Select preset depending on TX chip, use Arduino PIN 8 for Chip Select
TsUnb_EU1_Rfm69hw_t<8> TsUnb_Node;

The setup function largely consists of function calls to initialize individual components of the
code: First, the serial bus and the sensor are initialized to be able to use the serial monitor
and sensor later and to detect possible malfunctions. This is indicated by the flashing of the
onboard led:

void setup() {
 //setup serial Monitor
 Serial.begin(9600);

 //Sensor init
 unsigned status;
 status = bme.begin();
 if (!status) {
 Serial.println("Could not find a valid bme280 sensor, check wiring,

address, sensor ID!");
 while(1);
 }

 delay(100);

 // Blink the LED
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, HIGH);
 delay(100);
 digitalWrite(LED_BUILTIN, LOW);

Subsequently, already defined configurations of the node are transmitted and the packet
counter, which is to prevent duplicate reception of identical messages, is initialized. This is
symbolized by a second flashing of the LED:

24

End Point setup: Programming and

commissioning of the sensor nodes

 // Init the node and its parameters
 TsUnb_Node.init();
 TsUnb_Node.Tx.setTxPower(TRANSMIT_PWR);
 TsUnb_Node.Mac.setNetworkKey(MAC_NETWORK_KEY);
 TsUnb_Node.Mac.setAddress(MAC_EUI64);

 // TS-Unb ignores packets with an PkgCnt already received
 // We use this function to configure the PkgCnt from the
 // EEPROM
 TsUnb_Node.Mac.extPkgCnt = initExtPkgCnt();

 // Blink LED
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, HIGH);
 delay(1000);
 digitalWrite(LED_BUILTIN, LOW);
}

In the main function, the sensor data for temperature and humidity are read out first and
stored each in a float variable. Since the send function TsUnb.Node.send() can only process
integers, the data is next converted.

void loop() {

 // read sensor data and convert to integer
 //Temperatur
 float payload_sensor_t = bme.readTemperature();
 Serial.println(payload_sensor_t);
 payload_sensor_t *= 100;
 int16_t payload_transmitter_t = (int16_t)payload_sensor_t;

 // Humidity
 float payload_sensor_h = bme.readHumidity();
 Serial.println(payload_sensor_h);
 payload_sensor_h *= 100;
 int16_t payload_transmitter_h = (int16_t)payload_sensor_h;

In order to define a unique order and arrangement of the sensor data bits within the payload
array, they are assigned explicitly in the next step1. Thus, we later know exactly how the data
must be interpreted at the receiver, see also Troubleshooting: Control of the received data.
The TsUnb_Node.send() function then receives the data array and sends the payload using
MIOTY™ technology:

 //Prepare payload for correct format and save to array
 uint8_t txdata[4];
 txdata[0]= (payload_transmitter_t>>8)& 0xFF; //shift bits 8 to the

right and limit to 8 bit -> upper 8bit are stored in field,
remaining zeros are cut off in front

 txdata[1]= (payload_transmitter_t)& 0xFF; // rear 8bit saved and
front cut off

 txdata[2]= (payload_transmitter_h >>8)& 0xFF;
 txdata[3]= (payload_transmitter_h)& 0xFF;

1 The function TsUnB_Node.send() splits the message into 8 bit blocks, which are then sent sequentially. Since the

sensor data are 16bit in size and depending on the compiler the LSB or MSB are interpreted first, errors can occur

during transmission or later data interpretation. To avoid this, the data is therefore assigned with the help of this

code section exactly to the 8bit large blocks in the correct arrangement.

25

End Point setup: Programming and

commissioning of the sensor nodes

 //data transmission via mioty
 TsUnb_Node.send(txdata, sizeof(txdata));

 Serial.println(payload_transmitter_t);
 Serial.println(payload_transmitter_h);

As a last step, the packet counter is updated and these operations are signaled by the LED
flashing twice. Since the node only sends new data every few seconds, it can be temporarily
deactivated with the sleep() function:

 // We store the current PkgCnt to the EEPROM to
 // avoid the repetition of packets with the same count.
 // This value is only written every 256 packets to
 // save energy.
 updateExtPkgCnt(TsUnb_Node.Mac.extPkgCnt);

 // Blink the LED twice to indicate end of transmission
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, HIGH);
 delay(100);
 digitalWrite(LED_BUILTIN, LOW);
 delay(100);
 digitalWrite(LED_BUILTIN, HIGH);
 delay(100);
 digitalWrite(LED_BUILTIN, LOW);

 // Sleep the device for 5 seconds using the watchdog timer
 delay(5000);
}}

In order to make these steps visible in the serial monitor and to facilitate any necessary
debugging, appropriate print commands have also been added. The whole code and further
explanations can be found in the appendix.

3.2.2
Flashing and placement of the board

• Upload Settings:
The appropriate board with the corresponding processor must be selected in the board
manager via the paths shown in Figure 12 (for the MIOTY™ project the 3,3V model of the
Arduino Pro Mini with 8Mhz clock rate is used):

• Tools > Board > Arduino AVR Boards > Arduino Pro or Pro Mini Figure 12: Configuring the Upload Settings of the Arduino Pro Mini in the Arduino IDE

26

End Point setup: Programming and

commissioning of the sensor nodes

• Tools > Processor > ATmega238P (3.3V, 8 Mhz)

• Connecting the device to the PC:

• the board has to be connected to the PC via a TTL adapter according to Figure 13
(see color coding of the wires as per product description, here: red VCC, black
GND, white RXD, green TXD)

• the correct port has to be selected in the IDE under Tools > Port.

• Flashing the Board:
Depending on the adapter, the sketch upload is slightly different. The Arduino must
receive a reset signal before each upload. This can be done by the GRN/ DTR connector.
If the adapter has such an extra connector, then the code can be uploaded to the board
as usual. However, if it does not (as in our case here), in order to program the Arduino
Pro Mini, the reset button must be pressed during the upload until the compilation
process is complete (and then released). This is the case when the white text appears as
shown in Figure 14:

➔ Now the program should run on the board and we can already read out the

first data via the serial monitor. An output could look like shown in Figure 15:

 Figure 13: Connecting the Module with the TTL Adapter

Figure 14: Time to press the reset button when the white text appears

Figure 15: Serial Monitor Output of the Arduino Module after flashing

27

End Point setup: Programming and

commissioning of the sensor nodes

• Correct placement of the device:
In order to optimize your system’s operating range some additional aspects should be
considered as a last step:

• The antenna should be placed upright (vertically)

• the transmitting antenna should be kept at least 6cm, if possible 70cm away from
other objects, especially electrically conductive objects, walls and electronic devices
(e.g. PC, monitor, LED lighting, etc.)

• the antenna should not be placed near transmitting equipment (e.g. cell phones,
wireless headphones, etc.) as this may cause interference.

28

Base Station setup and Connecting

Endpoints: AVA Gateway start-up

4
Base Station setup and Connecting Endpoints: AVA Gateway
start-up

The following section will explain how to install and use the MIOTY™ developed Ava Gateway
as our base station. It comes with some pre-implemented features and functions which
facilitate the setup of our project (for more detailed information see the MIOTY™ -Alliance
Portfolio or Webtech’s Product Page) and is therefore well suited for our purposes. In this
regard, the theoretical background of the data transmission and the gateway’s context within
is explained first in section 4.1. Section 4.2 describes how to set up and commission the base
station. Section 4.3 deals with registering new end nodes and section 4.4 with receiving their
data. Finally, section 4.5 explains how to check the still raw data as a first troubleshooter.

4.1
Context with the data transmission path

Figure 16: The base station within the data transmission path

As Figure 16 illustrates, our communication and data transmission chain consist of several
components, each with a different set of tasks. The base station (the Ava Gateway in our
MIOTY™ project) collects the messages from all nodes registered to it and forwards them to
the backend. The backend consists of the service and application center and is responsible
for network management, encryption, and communication with the end user or applications.
It is located either on a third-party cloud platform or on an internal user server. For a general
overview and introduction to MIOTY™ data transmission or the special functionalities of its
components, see section 2.2.

In our case, important functions of the backend are already pre-implemented on the base
station. The AVA Gateway thus goes beyond the pure functionality of a base station and
describes a combined component with the backend, which thereby already enables
rudimentary basic functions of Service and Application Center such as the configuration of
sensors, the decoding of their data traffic and the analysis of their data via MQTT without
further steps, simply via the web interface. If desired, the gateway can also be configured in
such a way that the backend components are located externally, and the service and
application centers are possibly even managed separately (see section 4.2 of the official
document).

https://mioty-alliance.com/projects/weptech-ava-mioty-gateway/?portfolioCats=33%2C34%2C30%2C32%2C31
https://mioty-alliance.com/projects/weptech-ava-mioty-gateway/?portfolioCats=33%2C34%2C30%2C32%2C31
https://www.weptech.de/en/products/mioty/mioty-gateway-ava.html
https://www.iis.fraunhofer.de/content/dam/iis/de/img/Forschungsfelder/LV/VernetzungundIdentifikation/Technologien/mioty/Mioty-Mac_and_Higher_Layers_final.pdf
https://www.iis.fraunhofer.de/content/dam/iis/de/img/Forschungsfelder/LV/VernetzungundIdentifikation/Technologien/mioty/Mioty-Mac_and_Higher_Layers_final.pdf

29

Base Station setup and Connecting

Endpoints: AVA Gateway start-up

4.2
Base station setup and installation

Before the gateway can be used, the following steps should be carried out during installation:

• Connecting the gateway with the Lan socket, including DHCP support;
Note: for the use an Internet connection is required, if necessary consultation with the
IT department must be kept

• Screwing the included antenna to the gateway

• Connecting the USB-C Raspberry power adapter

Afterwards, the base station is ready for use and its web interface can be accessed via the
browser using ava/ or the corresponding IP address. More information about this can be
found in the manual or Quick Start Guide included with your device.

In addition, there are some aspects to consider when placing the Gateway itself in order to
optimize its operating range:

• the AVA Gateway is designed for indoor use only.

• its antenna should be placed upright (vertically)

• the receiving antenna should be kept at least 6cm, if possible 70cm away from other
objects, especially electrically conductive objects, walls and electronic devices (e.g. PC,
monitor, LED lighting, etc.)

• the receiving antenna should not be placed near transmitting equipment (e.g. cell
phones, wireless headphones, etc.) as this may cause interference.

In our project, both transmitters (nodes) and receivers (base station) are located indoors,
where the most interference and other attenuation effects are to be expected. The reception
quality is determined not only by the devices themselves, but also by their placement and
distance. The more walls and obstacles there are between them, the worse the connection
can become. For this scenario, operating distances of between 32m and 200m can be
achieved, depending on the situation and the setup (compare indoor-outdoor: 130m-
1800m, outdoor-outdoor: 1.8km-30 km). This should be taken into account when setting up
the system. More detailed information, including different scenarios with indoor and
outdoor placement, can be found in the official document.
For the correct setup of the end nodes, see section 3.1.3 or 3.2.2.

4.3
Register new Endpoints

Before registering new end nodes to the base station, make sure that the AVA Gateway has
already been correctly commissioned as described in Section 4.2 and that all corresponding
end nodes have been set up ready for operation, as described in sections 3.1 or 3.2.

To enable communication between devices and the gateway and to receive messages, the
end nodes must be registered in the application center of the base station. Through our web
browser, we can access the web interface of the base station via ava/ or with the
corresponding local IP-address (e.g. ava/ or just 192.168.178.168), which can be found in the
router settings as soon as the base station is connected (for the correct setup see section
4.2). Afterwards the dashboard should be visible and it gives us an overview and insights into
our project traffic (here not visible yet, since no nodes are connected):

https://www.iis.fraunhofer.de/content/dam/iis/de/img/Forschungsfelder/LV/VernetzungundIdentifikation/Technologien/mioty/Antenna%20Setup%20User%20Guide_A5_final_Druck.pdf

30

Base Station setup and Connecting

Endpoints: AVA Gateway start-up

Figure 17: View of the MIOTY™ Dashboard

If more information on the web interface is required, the Getting-started guide① can also
provide a good introduction and initial overview (see Figure 17).

The next step is to navigate to the Configuration Page② and fill in the Endpoint Registration
form with the following elements:

• EUI (Extended Unique Identifier): Typically printed on the label of your end node device.
It should be formatted as 8 hexadecimal numbers, separated by hyphens, e.g. 70-b3-
d5-9c-d0-a0-33-01. See section 5.1.3 for more information about the identifier and
section 3.1.2.2.2 to read out and redefine it for the Arduino.

• ShAddr (short address, reduces the required bandwidth): Defaults to the 5th and 6th
byte of the EUI, formatted as a single hexadecimal number.
It is entered automatically and therefore should not be filled in, if possible, as it can
lead to problems in case of errors.

• BiDi (bidirectionality): should be set for bidirectional nodes that can both send and
receive messages

• PreAtt (pre-attachment): All unidirectional devices must be pre-attached. Bidi devices
can also do an over-the-air attach.

• CarrOff (Carrier offset): Depending on the crystal tolerance of the end-point carrier
offset 1 or 5 is used.

• Network Key: The sensor’s network key, formatted as a single string of 32 hexadecimal
digits. Is defined via the node codes, compare sections 3.1.2.2.2 or 3.2.1.

• Application Key: The sensors application key, formatted as a single string of
hexadecimal digits. Optional.

• Type EUI: The EUI of the sensors type description, which Specifies the format of the
application data. Optional.

A fully completed Endpoint Registration form (based on our MIOTY™ project) might look like
in Figure 18:

Figure 18: End Point Registration form in the basestation web interface

No short address is required, as this is automatically assigned during registration. Since we
only want to send sensor data with our end nodes, but do not want to/cannot receive

31

Base Station setup and Connecting

Endpoints: AVA Gateway start-up

messages, we do not check the box for a bidirectional connection. Therefore, we also need a
pre-registration. Since we do not want to additionally encrypt our data at the application
layer (our data is already encrypted end-to-end), no key is needed here.

The type EUI can be used to assign data description formats to the individual devices and
to interpret the data. It is recommended to first check the correct reception of the raw data
(see section 4.5) before adding the type EUI in a further step (see section 5.3.2).

Afterwards the entries can be confirmed with Register③ (see Figure 18) and the node is
added to the base station. If it was registered correctly, it should now be visible under
Registered Endpoints and its messages can be received.

4.4
Data reception

If the sensor nodes were connected correctly according to section 4.3, their received
messages should be visible in the Dashboard① or the most recent message and its data in
the Uplink Page② as seen in Figure 19 and Figure 20.

Figure 19: Dashboard Overview when receiving first messages

Figure 20: Uplink Page Overview

Additional information on adding nodes can also be obtained from the Ava Gateway manual
included with your device.

4.5
Troubleshooting: Control of the received data

After the base station has been successfully commissioned (see section 4.2), all end nodes
have been registered (see section 4.3) and the first data has been received (see section 4.4),
a next relevant step is to check the correctness of the messages, which are still available as

32

Base Station setup and Connecting

Endpoints: AVA Gateway start-up

raw data, before they are interpreted with the help of blueprints (see section 5). This step is
optional, but it can facilitate the troubleshooting considerably.

For this purpose, the sent data must be compared with the received data. This is shown
hereafter using the example of our MIOTY™ project with the temperature sensors:

Thanks to our code for the nodes, we can read the sent data quite comfortably with the help
of the serial monitor in the Arduino IDE. To start it, you can either follow the path Tool ->
Serial Monitor, use the shortcut Ctrl + shift + m or click the icon in the upper right corner ①
as shown in Figure 21 (for more detailed information regarding the usage and functions of
the Arduino IDE see the official Getting Started Guide).

Figure 21: Possibilities to open the Serial Monitor in the Arduino IDE

Afterwards the data (first sensor data and then the data converted for transmission) should
be displayed in the serial monitor if the board is connected to the computer② (see Figure
22 and Figure 23). These can then be compared with the current message in the uplink page
of the Application Center of our base station③. To compare the data, the corresponding
data format due to the node code must be taken into account, see sections 3.1.2.2.3 or 3.2.1
for the code with notes, or for the complete code appendix_arduino or appendix_m3b).1

If the four/ seven hexadecimal digits (corresponding to 16/ 28 bits as defined in the code)
are converted, the values received are the same and the transmission has worked correctly
(shown exemplarily for the Arduino node in Figure 22 and for the M3 board in Figure 23):

1 The data format or the individual data points of the Arduino can be read quite easily from the code, for the data

arrangement in the M3 board a look into the documentation of the send function sendWeatherData() is necessary,

therefore see this Github page.

0x0a6f ≙ 2673
0x0f15 ≙ 3861

Figure 22: Verification of the received data by converting the send message at the Arduino node

https://www.arduino.cc/en/Guide
https://github.com/mioty-iot/m3b_helper/blob/master/src/m3bDemoHelper.cpp

33

Base Station setup and Connecting

Endpoints: AVA Gateway start-up

Figure 23: Verification of the received data by converting the send message at the M3 Board

If the values do not match, the code for the sensors should be checked again for possible
error sources.

0x0bd2 ≙ (3026/10 – 273.15) = 29.41

0x3026 ≙ 48

0x2669 ≙ 9833/10 = 983.3

0x0119 ≙ 281

34

Correct representation of data on

the Base station with the help of

blueprints

5
Correct representation of data on the Base station with the help
of blueprints

Blueprints enable the received data to be interpreted at the base station and displayed in a
readable form. They thus facilitate subsequent further processing or transport. Chapter 5.1
provides a general overview and introduction to the Json data format and blueprints, chapter
5.2 describes and explains their architecture and how blueprints can be created, and chapter
5.3 concludes by showing how finished blueprints can be added to the base station or
addressed to end nodes.

5.1
Introduction to Blueprints and the Json data format

A Blueprint is a payload format description that enables the received raw data to be
interpreted. Json, on contrast, is a compact data format that can be easily understood by
both humans and machines due to its easy-to-read text form. A data format generally
specifies (still independent of the actual application) how the data is structured and
represented. The payload format description on the other hand is often based on such a data
format and does not describe the data itself, but how to interpret it. Both aspects are
necessary for a functioning data processing and data exchange between applications. They
also occur together in our MIOTY™ project, where the Blueprint is described in Json format.
The application of these two concepts is relevant, both for the correct representation of the
raw data at the base station and later when processing and sending it further (e.g. to our IoT
platform). It can therefore be crucial to be able to use the received data in a meaningful way.

The following section will therefore provide a brief introduction to the functionality and
meaning of the Blueprint and with respect to that explain how the Json format is constructed
and subsequently interpreted.

5.1.1
Why do we use Blueprints?

The concept of blueprints not only facilitates data exchange and transport between different
applications, but also offers some advantages for systems with limited bandwidth and
battery-powered endpoints, as is the case with MIOTY™. The use of format descriptions
creates a very flexible and extensible approach. Individual devices and applications can be
developed according to individual requirements rather than strict protocol constraints that
dictate, for example, the type of payload data. Thus, any type of payload data is supported
and can be sent as long as there is a corresponding blueprint that explains how the data is to
be interpreted. Furthermore, only dynamic information has to be transmitted, since all static
information, e.g., what kind of data type it is or what unit the information has, is already
known due to the blueprint. It is this bandwidth saving that benefits LPWANs such as
MIOTY™.

5.1.2
What is a Blueprint?

The Blueprint provides all the information needed to interpret the raw data of an end-point
device. In our MIOTY™ project, for example, it describes exactly how the payload of the with
MIOTY™ technology transmitted data (which arrives as a hexadecimal sequence of numbers
at the base station) is assigned byte by byte to (understandable) information and interpreted.

35

Correct representation of data on

the Base station with the help of

blueprints

The Blueprint for MIOTY™ related data is represented in Json format. Each Blueprint must be
assigned a unique ID ("typeEUI") from the provider's IEEE EUI64 range.

5.1.3
What is a TypeEUI and what is it needed for?

An EUI describes a standardized MAC address format for identifying network devices,
formatted as 8 hexadecimal numbers. In addition to devices, it can also be used to uniquely
distinguish and define data format descriptions or blueprints. This is then referred to as a
TypeEUI. These are stored in a database of the Application Center with the associated
Blueprint. As soon as the Application Center receives a message containing a TypeEUI, it
knows what type of data it is and how this raw data must be interpreted or decoded.

5.1.4
Summary Example Blueprint

Let us now assume that the following raw data are available. Without a corresponding
explanation, however, not much can be said about them yet. Through the Blueprint,
however, we know the following:

• Bytes 0 and 1 belong to temperature data of a sensor

• the data size is 2 bytes

• the unit of the data is °C

• the data type is integer, i.e., the data must be
converted into decimal numbers and to get the
sensor data, this decimal value must be divided by
10.

If we convert the hexadecimal number 0x00F3 and divide the result 243 by 10 we get 24.3. If
we now interpret the raw data, we see that our end-node has measured and sent 24.3°C.

5.1.5
How does the Json Data Format work?

The JSON data exchange format is defined by its lightweight, text-based, language-
independent syntax. It is a data format for storing, processing, and transporting data, easy to
read and has a small data size. Different data types are supported, but the data itself is
described as a text file, a so-called "string".

Understanding the syntax of Json is necessary to be able to comprehend the structure of
blueprints and later create our own. The easiest way to explain it is by using a concrete
example, so in the following we will build a Json object step by step and explain the
corresponding elements:

• Generally, JSON describes data in the form of objects. An object is defined by two curly
braces {}:

{

}

• The actual object description is then located within these brackets. Objects consist of
key pairs, which are defined by name (also called key) and value. The name/ key
describes the object’s name, whereas the value includes the object’s value:

Byte 0 1

 Payload
Data

00 F3

By the two brackets a new object is

defined. This one is still empty.

36

Correct representation of data on

the Base station with the help of

blueprints

{

 "Name": "James",

 "Hobbies”: "Swimming"
 }

• Furthermore, different value elements, which define the kind and content of the data
and thus ultimately the object type can be used:

{
 "Name": "James",

 "Age“: 24,

 "is married“: true,

 "Job": null,

 "Address": {
 "Street":"Aldridge Ave",
 "Number": 20,
 "City": "London"
 },

 "Hobbies“: ["Skiing",
 "Painting", "Swimming"]
}

All Json files follow these basic syntax rules. More information can be found in the official
document or this website about the Json standard.

5.2
Creating a Blueprint

The Blueprint allows to interpret and transform the raw data of the end nodes into
understandable values. This takes place in the application Center of the base station by
providing all necessary instructions to assign the payload bits to the corresponding
information. The payload format description itself is described in Json format. More detailed
information and background about Blueprints, as well as the basic functionality and
explanation of the Json format can be found in the previous sections.

The following section, on the contrary, is intended to show the basic structure of the
Blueprint architecture and to explain its contents based on the example from our project. For

• Let's assume that our object is supposed to

describe a person. It currently consists of two

objects with their corresponding name/value pairs.

"Name" and "Hobbies" are the names of the

objects, "James" and "Swimming" their respective

values.

• Names/ keys are always strings, whereas values

have different data types and elements

Important syntax:

• Strings must be marked with ""

• the name and the value of a token are separated

with a colon

• individual tokens are separated with a comma

Numbers

Boolean values with true or false

• Syntax: If there are several values for a token an

array can be used. This is defined by square

brackets []. An array can also contain several

objects.

• In principle, data can be nested within each other

in any way.

The value of a token can itself be an object again.

The same syntax rules apply. Thus, any number of

objects can be placed inside each other.

 empty values, if e.g., no value is available

 Strings

https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.json.org/json-en.html

37

Correct representation of data on

the Base station with the help of

blueprints

this purpose, all contents relevant for our project are described. In addition, in section 5.2.2
we will use an example to show exactly how the template code must be adapted and filled
in. If further information is required, it can be found in the Application Layer Specification.

In addition, the sensor-specific blueprint of the M3 Board as well as Arduino Module can be
found in the Appendix. These can be adopted or modified for own future designs.

5.2.1
Architeture

Blueprints should always be structured according to the following scheme. In the sequel, the
Blueprint from the MIOTY™ project is presented and all its relevant objects including their
value elements/ types are described:

{

 "version": "1.0",

 "typeEui":

"70b3d56770ff0230",

 "meta": {
 "name": "Temperature
 Sensor",
 "vendor": "Fraunhofer
 mioty
 Demonstrator"
 },

 "uplink": [

 {
 "id": 0,

Version object, mandatory

• String type

• latest specification version of the format

description.

Type ID object, mandatory

• String type, 16 characters long

• Unique IEEE EUI identifying the specific blueprint

file

Meta Information object, optional

• Object type ({ } needed), usually with strings

• containing self- assigned metadata

• designed to map additional information to

endpoints, e.g. vendor name, device type,

firmware versions, etc.

Uplink object, mandatory

• Array Type ([] needed), usually with objects

(format objects)

• endpoints can send multiple and different

payloads, these are separated by IDs and

described by uplink formats

• Uplink format defines composition of message

sent from endpoint to base station

• usually consists of different (optional) format

objects: id, crypto, payload

• Here: this example has only one format object

• one-to-one transferable to the downlink object

•

ID format object, element of uplink object,

mandatory

• Int type

• ID of the MAC payload format described in this

object

• default 0,

• Used in case of endpoints with multiple payload

descriptions or if Standardized formats

• Here: in our case our endpoint sends only one

payload, which we define with 0 (no distinction is

necessary anyway)

38

Correct representation of data on

the Base station with the help of

blueprints

 "crypto": 0,

 "payload": [
 {
 "name":

"temperature",
 "component":

"16bitTemperature"
 },
 {
 "name":

"humidity",
 "component":

"16bitHumidity"
 }

]
 }
],

 "component": {
 "16bitTemperature": {

 "size": 16,
 "type": "int",
 "func": "$/100",
 "unit": "°C",
 "littleEndian": false
 },

Crypto format object, element of uplink object,

optional

• Int type

• defines if and with which cryptography mode the

data is end -to-end encrypted in the AL

• default value is 0 (our example does not use

encryption)

• if used, interoperability between node and AC

must be ensured

• more information can be found in the

specification

• default value is 0 (our example does not use

encryption)

• if used, interoperability between node and AC

must be ensured

• more information can be found here

payload format object, element of uplink object,

mandatory

• Array type with component objects

• Contains component description for every

component in payload

• The Order of the components in the payload

array defines the order of the interpretation of

our payload message

• Two methods:

o Inline description (instead of Reference to

component, see the M3 Board blueprint in

the appendix as example)

o Reference to component (see example

here)

• Here: the two components “temperature” and

“humidity” are created

• Their component values (e.g.

“16bitTemperature”) can be used to reference to

their component description that defines the

component

Component object/ component description,

element of uplink object, mandatory

• Object type with component attributes

• Components referenced in the uplink section

must be described (with component attributes/

objects)

• Component keys (here e.g. “16bitTemperature”)

link component descriptions to their references

and make them reusable

Component attributes, element of component

object, mandatory

• Different types, describe the component

• The following attributes are possible:

Key Type Description

size int Size of component in bit

type string Datatype of compo-

nent, for a list with all

types see table

Component Datatyp

unit string Unit of component

39

Correct representation of data on

the Base station with the help of

blueprints

 "16bitHumidity": {
 "size": 16,
 "type": "int",
 "func": "$/100",
 "unit": "%",
 "littleEndian": false
 }

 }
}

5.2.1.1
Component Datatypes

5.2.1.1
Function Literals

Variables Input value of the enclosing component: $
Input value of other components $<component name>

constants Euler’s constant: e= 2.71828…, Archimede’s constant: π= 3.14159…

operators

arithmetic +, -, *, /, %

relational ==, !=, <, >, <=, >=

logical &&, ||, !

bitwise &, |, ^, ~, <<, >>

functions abs, acos, asin, atan, atan2, ceil, cos, cosh, exp, floor, ln, log,
max, min, pow, round, sin, sinh, sqrt, tan, tanh

parenthesis ()

Table 3: Funktion Literals

1 The binary data represents the unconverted user data in base64. The most significant bits of the most significant

byte are padded with 0 if the size is not a multiple of 8.

Type Describtion Example

int Signed integer (positive and negative values), <=64 bit 12; 399; -1,111

uint Unsigned integer (only positive values), <= 64 bit 23; 5,698

float Floating point number, size must be 16, 32 or 64 bit 12.345, -55.3

bool Boolean values True; false

string String of UTF-8 characters, must be a multiple of 8 “Multiple”; “absolute”

binary Binary data 100101; 11111

Table 2: Component Datatypes

func string Mathematical function to

calculate components

output value, for a list

with all function literals

see table Function Literals

Little

Endian

boolean Defines bit order for data

interpretation: if false,

first bit in row (most

significant bit) gets

interpreted first

https://www.charset.org/utf-8

40

Correct representation of data on

the Base station with the help of

blueprints

5.2.2
Create your own blueprint: Example Blueprint from our project

In the following is briefly shown how the provided template code can best be adapted to our
own projects. For this purpose, all relevant aspects have been marked and described how
they were filled based on an Arduino based end-node (the schematic can be transferred to
the blueprint of the M3 board in the same way). As we can see, it is often sufficient to
exchange the values, since the keys can be retained. If different or additional information is
needed for individual projects, it can be found either in the previous overview of the
Blueprint architecture or in more detail in the official document. Furthermore, the blueprints
of the M3Board and the Arduino can be found in the appendix.

{
 "version": "1.0",
 "typeEui":

"70b3d567700ff00230",

 "meta": {
 "name": "Temperature

Sensor",
 "vendor": "Fraunhofer

Mioty Demonstrator"
 },
 "uplink": [
 {
 "id": 0,
 "crypto": 0,

 "payload": [

 {
 "name": "temperature",
 "component":
 "16bitTemperature"
 },
 {
 "name": "humidity",
 "component":
 "16bitHumidity"
 }

]
 }
],

Insert the TypeEuI:

• Here the Blueprint must be assigned a unique ID

(TypeEuI) from the vendors IEEE EUI64 range,

allowing the data to be interpreted later in the

base station using it.

• the TypeEuI is always 16 characters long

Insert Metadata if required:

• Metadata allows to send even more project-

specific and individual information

• They are optional, which means that the meta

block can be omitted completely.

• Metadata are for example useful to better

distinguish many different end nodes with

different functions and payloads or to transmit

further information which is not defined by

default.

• They cannot be read out directly in the base

station, but e.g. later in an MQTT client.

Define data components:

• When defining and describing the components,

it is very important to exactly pay attention how

and in which order the data are arriving in the

base station

• It is also particularly important that the order of

the data is maintained, otherwise the data will be

misinterpreted. If we send the temperature data

first, these must also be defined as the first

component!

• The form of the data is substantially defined by

the programming of our end nodes

• in our case we want to send temperature and

humidity data of a sensor

• since these data are processed and interpreted

differently, we create a separate component for

each of them

• the exact definition of the component based on

its attributes is located as a reference using the

name in the component description

41

Correct representation of data on

the Base station with the help of

blueprints

 "component": {
 "16bitTemperature": {
 "size": 16,
 "type": "int",
 "func": "$/100",
 "unit": "°C",
 "littleEndian": false
 },
 "16bitHumidity": {
 "size": 16,
 "type": "int",

 "func": "$/100",
 "unit": "%",
 "littleEndian": false
 }

 }
}

5.3 Adding and Using Blueprints in the Base Station Application
Center

The final step before the functionality of the Blueprints can be fully utilized is to add them to
the application center of our base station und then assign them to our end nodes. However,
before this is tackled, a few points should be considered first:

• In order to access the web interface of the base station, our AVA gateway must first be
put into operation (see section 4.2)

• The correct transmission of the received data should be checked before adding a
Blueprint (for more information on how to check the data see section 4.5).

• An individual TypeEUI is required for each Blueprint

• Blueprints should already been adapted or created in advance to the corresponding end
nodes and their data (for more information on how to create a blueprint see section
5.2).

Specify the data interpretation using the

component attributes:

• With the help of the component description, the

exact interpretation of the data can be

determined

• The interpretation is based on how the data is

processed in our end node and subsequently

sent

• This in turn is determined by our node

programming

• The attributes are therefore defined in our

example as follows:

o Size: the size of our temperature and humidity data is 16 bits each.

o Type: the provided function to send the data in the code for the nodes always needs integer,

which is why we specify this here

o Func: since our node can only send integers, the sensor data had to be converted

beforehand. To get the original values and undo the preprocessing, we divide the raw data

by 100 to get floating point numbers again.

o Unit: here we only have to specify the respective unit as string, in our case °C for

temperature and % for humidity

o littleEndian: because we want to interpret our data in the order they are sent, we set this

value to false

➔ in sections 3.1.2.2 and 3.2.1 you can find again the whole code of the end nodes, from

which the above attribute values can be derived

➔ for an illustration of a possible data interpretation with the help of a blueprint see

section 5.1.4

42

Correct representation of data on

the Base station with the help of

blueprints

• TypeEUIs of nodes that have already been added may have to be updated (for more
information about TypeEUIs see section 5.1.3)

If basic information and background on Blueprints is required, this can be found in section
5.1. In the following, it will be explained step by step how to add or edit already completed
Blueprints to our AVA Gateway, how to use them and finally how to assign them to a
Blueprint and check their correct functionality.

5.3.1
Adding a Blueprint to the Base Station

Before we can add a Blueprint, we need to open our web browser and access the web
interface of the base station through ava/ or with the corresponding local IP-address (e.g.
ava/or just 192.168.178.168), which can be found in the router settings as soon as the base
station is connected.
We should then see the Dashboard Overview as in Figure 24:

Figure 24: Dashboard Overview in the basestation web interface

To add a new Blueprint, we next navigate to the Configuration tab ① as in Figure 25:

Under the entry "End Point Type Editor"② shown in Figure 26 all necessary components can
be filled in:

• ③ A unique TypeEUI for our Blueprint, which we can later assign to our end nodes and
thus interpret their data

Figure 25: Configuration Tab in the basestation web interface

43

Correct representation of data on

the Base station with the help of

blueprints

• ④ and the actual description.

Afterwards, everything is confirmed with the Store button⑤. If necessary, old Blueprints
can also be viewed here with Load and easily edited⑥ or removed with Remove⑦.

If the Blueprint was saved correctly, the message “Type format stored” should appear below.
The Blueprint is then available in the database and can be used.

5.3.2
Assigning a Blueprint to an End Node

Before assigning a Blueprint to an end node, it is recommended to first check the correct
transmission of the data in order to simplify any troubleshooting that may be necessary in
the event of incorrect data representation. If the data is displayed incorrectly after adding
the Blueprint, this is therefore due to the specification of our data format description.

Looking again at our Dashboard, it should appear as in Figure 27:

Figure 27: Dashboard Overview with data reception

As can be seen here, one node is currently registered at the base station and is sending
data①. They are received by the base station②.

Figure 26: End Point Type Editor in the base station web interface

44

Correct representation of data on

the Base station with the help of

blueprints

Figure 30: Data reception in the uplink page with Blueprint assignment

As Figure 28 illustrates, the data is currently still in its raw form and not interpreted③
because the corresponding end node has not yet been assigned to a TypeEUI, respectively a
Blueprint④ (the most recent record can be read in the Uplink tab⑤):

Figure 28: Data reception in the uplink page without Blueprint

To change this, it is first necessary to switch back to the Configuration tab. In order to assign
a Blueprint to an already existing end node, the data can simply be entered again and the
TypeEUI of the desired blueprint needs to be added to the corresponding field (as if a new
node was added, see section 4.3 for more information⑥) and saved using the Register
Button⑦. The node will then be updated automatically⑧. See Figure 29 for an overview of
the respective interfaces.

Figure 29: Interface for assigning a new blueprint to a node

Now the node should be assigned a type⑨ and the correctly interpreted data⑩ should
be displayed in the uplink tab as seen in Figure 30:

5.3.3
Troubleshooting

• if the data is still displayed as hexadecimal numbers: it should be checked if the TypeEUI
has been assigned correctly and e.g., no typing errors have slipped in

• if the data is displayed incorrectly (but converted): either the code for the blueprint
should be checked again for coding errors or the blueprint/ TypeEUI the node is
assigned to might be wrong and therefore its data is not interpreted correctly.

Since even small spelling mistakes or mix-ups lead to problems, both the Blueprint code
and the TypeEUIs should be created and described with care.

45

Data transfer via MQTT and display

on the IoT platform

6
Data transfer via MQTT and display on the IoT platform

Using the AVA Gateway web interface, first sensor data of the nodes can already be read out
(see section 4.4). For many applications and projects, however, storage, further processing,
visualization, or intelligent coordination of individual data points is required or desirable. For
this purpose, IoT platforms are mostly used. They represent an important tool within the
data control of the IoT network (for a complete overview of the data chain see section 2.2.1),
for example, by capturing and storing all data and then processing it appropriately using
versatile features. They allow not only to connect physical with virtual objects, but also to
create an interface to possible application programs. In our MIOTY™ project, the open-source
IoT platform ThingsBoard is used for this purpose (as an alternative open-source platform
check out Grafana for example). As with most IoT platforms, the data exchange takes place
via the so-called MQTT protocol.

A general overview of the data transfer is given in section 6.1. How ThingsBoard can be used
as an IoT platform, and all the necessary steps are explained in sections 6.2 and 6.5. Since a
basic understanding of the MQTT protocol is necessary for the implementation, it is
introduced in section 6.3. This is followed by a description of the actual implementation of
the MQTT functions in section 6.4.

6.1
Data transfer to ThingsBoard

Figure 31: Data transfer structure to ThingsBoard

Several steps are necessary to transfer the data from the base station to the IoT platform
ThingsBoard using the MQTT protocol. As Figure 31 shows, this requires several MQTT-
capable devices that are adapted to each other. Some of these elements are already pre-
implemented by the base station, whilst others still need to be realized. For our project, a
further external device has to be integrated into the data chain and equipped with
appropriate software to use MQTT functions. The reason for this specific structure is
illustrated in section 6.3.2.5.

https://thingsboard.io/
https://grafana.com/oss/grafana/

46

Data transfer via MQTT and display

on the IoT platform

6.2
The IoT Platform ThingsBoard

IoT platforms often represent an important tool within the IoT network as a data
management and control tool as well as an interface to applications (compare the
introduction section 6). The open-source IoT platform ThingsBoard used for our MIOTY™
project allows an easy integration and use in the own project due to its diverse features, well-
documented tools and application examples. As a no-code platform, it also enables
uncomplicated and intuitive use and configuration based on its graphical user interface and
thus offers successfully usable application software even without programming skills.
Furthermore, with the help of clear tutorials and instructions, even inexperienced users can
exploit the possibilities of the platform. In addition to the reliable collection and storage of
data, ThingsBoard allows for customizable processing and a vivid presentation of data using
predefined visualization tools. Flexible and customizable configurations of settings, functions
and tools allow the platform to be used in a variety of projects. A first overview of the
platform can be found here.

6.2.1
Using the Platform

To use the platform and view your first data, a ThingsBoard Cloud Maker account is required.
This is free for the first month (see here). It is also possible to do a free on-premise
installation, a corresponding tutorial can be found here. Under the different menu tabs of
this page further help like documentations or guides to different topics are available as well.

6.2.2
Adding new devices

In order to be able to send data to ThingsBoard, each node requires a provision via which it
authenticates itself to the platform. It is obtained when registering a new device:

Under the Device Groups tab① and the All submenu②, new nodes can be added via the
+ icon③. In the window that opens, the name and other data can be entered④ and added
using the add button⑤ (see Figure 32).

Figure 32: Adding new devices to ThingBoard

https://thingsboard.io/
https://thingsboard.io/installations/
https://thingsboard.io/docs/user-guide/install/pe/installation-options/

47

Data transfer via MQTT and display

on the IoT platform

After adding the new device, the token can be retrieved as seen in Figure 33:

This token is very important, since no data can be sent without it (it should therefore be well
saved). It will be part of the MQTT message later, together with the payload. See section
6.4.1.2. For further detailed instructions, see also the following page.

6.3
Introduction to MQTT

The MQTT (Message Queue Telemetry Transport) protocol defines how messages and data
are exchanged on the Internet between IoT network participants such as embedded devices,
sensors, industrial PLCs or IoT platforms, so that communication can take place. In terms of
our MIOTY™ project, it is used to transport our (sensor) data from the application center of
the base station to the server of the IoT platform. Here, in a further step if needed, the data
can then be collected, processed, and visualized in a more graphically appealing way.

The following section is therefore intended to provide a brief introduction to the messaging
protocol and to provide information on the main functions and concepts, relevant for the
setup of the MIOTY™ project. More comprehensive information, tutorials, deeper
explanations, and links can be found on the official MQTT website.

6.3.1
Why do we use MQTT?

MQTT was originally developed in 1999 for monitoring an oil pipeline. Since the
circumstances in mobile communication were very challenging during that time, the protocol
had to be adapted in a correspondingly robust way. And it is precisely these principles, on
which the protocol is still based today, that make it so suitable for communication on the
Internet of Things. It features simple implementation and resource-efficient use of
bandwidth and energy, which makes it particularly well suited for small, distributed devices
with limited bandwidth and energy. It also provides reliable communication across unstable
networks and constrained environments, allowing many devices to be networked together.
This makes it very well suited for the Internet of Things and is part of the reason why it is so
popular and the most widely used messaging protocol for IoT.

6.3.2
What Is MQTT?

MQTT is a client/server model and designed as an extremely lightweight publish/subscribe
messaging transport. The communication is based on a publish and subscribe system. Devices
can publish messages to a specific topic and all devices subscribed to that topic receive the
message. The message management itself is handled by an intermediary server, the so-called

Figure 33: Retrieval of the ThingsBoard Token

https://thingsboard.io/docs/getting-started-guides/helloworld-pe/?connectdevice=mqtt-windows#step-1-provision-device
https://mqtt.org/

48

Data transfer via MQTT and display

on the IoT platform

broker. The main applications include sending messages to control outputs and reading and
publishing data from sensor nodes. Beside this basic functionality, MQTT offers further
features, such as Quality of Service Levels, Persistent Session and Queuing Messages,
Retained Messages, Last Will &Testament and Keep Alive & Client Take-Over.

6.3.2.1
Publish/ Subscribe Architecture

In a publish and subscribe system, IoT devices can either send a message on a specific topic
(publish) or receive messages on a specific topic (subscribe). There are devices that are
designed to do both, but only one function can be performed at a time. It is possible for
several clients to publish messages to one topic and for multiple clients to be subscribed to
the same topic. This model offers the great advantage that participating devices do not have
to communicate directly with each other or even know of each other's existence. Only the
respective topic and, if necessary, an access token for authentication at the broker must be
known. The connection and all other functions and tasks are handled by the server/broker.
For more information refer to here

6.3.2.2
Client/ Broker Model

Client: A client can be any device that runs a client implementation of the MQTT protocol and
connects to an MQTT broker via the Internet. Both publisher and subscriber fall under this
category. The designation is simply a result of whether the client is currently publishing a
message or receiving a subscribed message.

Broker: The broker/server is the heart of the MQTT protocol. It is the central node that
connects all clients. It receives all messages and then has the task of filtering and forwarding
them so that each client only receives the messages to which it has subscribed. It also
authorizes and authenticates all clients that want to publish or receive messages to it. For
more information about the Client/ Broker concept refer to here.

6.3.2.3
Topics

Topics can be used to identify individual messages. They can be understood as a kind of
subject of the message. A client can either publish a message for a specific topic or subscribe
to messages from individual topics. These can then be filtered and forwarded by the broker
accordingly. Topics are hierarchically structured similar to URLs and consist of several levels,
which are separated from each other with a forward slash. By specifying the exact levels of
the respective topics, the broker knows exactly which message a client wants to receive. Here
is a short example:

Temperature/Living Room/Sensor 1
Temperature /Living Room/Sensor2

Temperature /Bedroom/Sensor1

The example above shows how the Topics of 3 different sensors could look like, with which
one would like to measure for example the temperature at different places in the house. The
topic defines exactly which data is involved and you can, for example, only read out the data
from the sensor in the bedroom if you only subscribe to the lowest topic.

If you want to subscribe to more than one topic at the same time, you can use the so-called
wildcards. These can be divided into two types, namely single- and multi-level. A single-level
wildcard replaces one topic level and is represented with a + symbol. A multi-level wildcard

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-7-persistent-session-queuing-messages/
https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/
https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/
https://www.hivemq.com/blog/mqtt-essentials-part-10-alive-client-take-over/
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment/

49

Data transfer via MQTT and display

on the IoT platform

Figure 34: Typical MQTT Architecture

can cover many topics, is represented with a # symbol and is always at the end of a topic. If
a client is subscribed to a topic with a multi-level wildcard, he will receive all topics that match
the levels up to the wildcard. This example illustrates these functions once again

Temperature /+/Sensor1
Temperature /Living Room/#

Temperature / #

The first topic uses a single-level wildcard. Here the client wants to receive all messages from
Sensor1 clients, regardless of the room. With the second topic, only the data from the living
room should be subscribed. With the third example, the client would receive messages from
all topics, since neither the sensor nor the room matter. Further information can be found
here.

6.3.2.4
Summary Example

The example in Figure 34 shows how a typical MQTT data exchange could look like. There
are three clients/sensors, each of which sends the temperature of their location to the broker
with the corresponding topic. From there, they can be subscribed to, which is what client
Living Room 1, does. It publishes its own data on the one hand, but also receives all messages
from the sensor in the bedroom.

https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/

50

Data transfer via MQTT and display

on the IoT platform

6.3.2.5
MQTT and our MIOTY™ Project

Figure 35: MQTT Architecture in the MIOTY™ Project

As shown in Figure 35, our project requires two brokers to transport the data from the Base
Station (originally from our sensors) to our IoT platform ThingsBoard. The first broker runs
on the Base Station and is already pre-implemented. It receives the sensor data from our end
nodes using MIOTY™ technology and stores it temporarily. It then publishes the data on a
given topic. But since the pre-defined topics have a different format than our IoT platform
requires, a direct subscription from ThingsBoard is not possible and the topics must be
converted correctly beforehand. In addition, the data format of the Base Station and
ThingsBoard also do not match and must be adjusted (otherwise the data would be
misinterpreted).

This is done with a software that includes two separate clients, one which first subscribes to
the base station data and then converts it to the correct format. The other client then
publishes the data to ThingsBoard via the second (ThingsBoard) broker with the adjusted
topic. The software for this implementation can either run on a separate PC, on a
microcontroller such as a Raspberry Pi or on the MIOTY™ Base Station itself, if the login
information is available. For a more detailed overview of MQTT in our project, see the
corresponding implementation chapters 6.4.1 and 6.4.2.

6.4
Implementation of the MQTT Clients…

As illustrated in sections 6.1 and 6.3.2.5, the data from the base station cannot be
transmitted directly to our IoT platform via MQTT due to format and topic incompatibilities.
This requires an additional client that receives the data from the base station and an
additional client/ server that then sends it correctly converted to ThingsBoard (for a more
detailed overview of the MQTT Protocol and how it works, see chapter 6.3).

Several open-source programs and brokers such as Eclipse Mosquitto, MQTT Explorer or the
Paho Python client are already available for the implementation of this software. In this
tutorial, the realization of the MQTT clients functions using the Paho Python Client and a
combination of the Paho Client and Eclipse Mosquitto in Linux is presented. The appendix
furthermore contains the complete codes and a short overview of its most important
functions.

https://mosquitto.org/
http://mqtt-explorer.com/
https://www.eclipse.org/paho/index.php?page=clients/python/index.php

51

Data transfer via MQTT and display

on the IoT platform

6.4.1
… using the Paho Python Client

The following steps describe how to use the Paho Python client for the MIOTY™ project
requirements.

6.4.1.1
Preparatory Steps

In order to execute and develop the software for the MQTT applications successfully, a few
preparatory steps and considerations are necessary.

• Install a suitable IDE
It is advisable to use a suitable IDE (development environment). Among the open-
source solutions, there are several possibilities such as KDevelop, Spider, PyCharm or
Microsoft's VisualStudioCode , which is used in this project not only due to very helpful
intext or extension functions and code navigation, but also because of its Github
integration. Respective user and installation guides for the IDEs can be found on the
corresponding pages. To use Python in Visual Studio Code, see the following steps
(more detailed Information can be found here):

• Install Visual Studio Code

• Install the Python Extension

• Install a Python Interpreter (should not be necessary for Linux based operating
systems due to the pre-installation of Python 3)

For a linux based operating system a simple text editor like vim is also sufficient (see
section 6.4.2).

• Install the required Client
For the implementation of the MQTT Client/ Server, our MIOTY™ project uses the Paho
Python client from the Eclipse Paho Project. This freely available open-source
implementation, with detailed documentation that includes tutorials, examples, and
other support, makes it easy to implement MQTT functions for various programming
languages. In this project, Python is used for this purpose (a good introduction to this
coding language can be found, for example, on the interactive websites learnpython.org
or W3School). To be able to use all functionalities, the library must be integrated (the
instruction refers to VSC, for more information see here):

• Access the VSC Terminal via Terminal < New Terminal (a new Power Shell based
Window should open). Linux-based operating systems can also use the console
as usual.

• Make sure pip1 is installed with the following command:
$ pip --version

(if pip is not found then see this page for the installation)

• Run the following command to install the paho client:
$ pip install paho-mqtt

1 Pip is the standard package manager for Python. It allows to install and manage additional packages that are not

part of the standard library. For more information see here.

https://www.kdevelop.org/
https://www.spyder-ide.org/
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/
https://code.visualstudio.com/docs/python/python-tutorial
https://code.visualstudio.com/#alt-downloads
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://www.python.org/downloads/
https://www.eclipse.org/paho/index.php?page=clients/python/index.php
https://www.eclipse.org/paho/index.php?page=clients/python/index.php
https://projects.eclipse.org/projects/iot.paho
https://www.learnpython.org/
https://www.w3schools.com/python/default.asp
https://blog.openthreatresearch.com/installing_python_library_vscode
https://pip.pypa.io/en/stable/installation/
https://realpython.com/lessons/what-is-pip-overview/

52

Data transfer via MQTT and display

on the IoT platform

6.4.1.2
The Program Code

For the complete code together with all relevant functions see the appendix. Here you will
also find a program for just receiving and reading out the data from the base station (MQTT
Client). Basic information and help for the Paho Python client can be found in the
corresponding documentation.

First some necessary modules must be imported for the correct functionality of the software:

allows to use features from possibly higher Python versions by

backporting them into the current interpreter
from __future__ import print_function

import client class, necessary for important paho functions and
features

import paho.mqtt.client as mqtt

import server class, necessary for important paho functions and
features

import paho.mqtt.publish as publish

if required, further security functions such as encryption of the
connection or identity verification can be added

import ssl

Allows among other things to decode Jason coded strings
import json

This is followed by some variables for easy customization of node-specific data: the devices
EUI and the ThingsBoard token (is obtained when adding the nodes to ThingsBoard, see
section 6.2.2), which can later be used to verify the nodes at the brokers (the code contains
sample data):

Put in your Mioty-EUI and ThingsBoard Token
Format: [["EUI1","Token1"],["EUI2","Token2"],["EUI3","Token3"]]
euiTokenPair = [
 ["01-02-03-04-05-06-07-08","n77wTHZcffg1jFZrPvqH"]
]

In addition, we define variables for the configuration of the MQTT transport for better
customization. With the help of this data, the messages of the base station can be subscribed
to and received:

• the IP address of the base station (under which the web interface can also be accessed)

• The Broker port (port 1883 is typically reserved for MQTT; this should also be visible in
the configurations of the base station, see Figure 36):

Figure 36: Retrieving the broker port for the MQTT software from the configuration tab of the base

station web interface

• the topic under which the broker of the base station publishes the messages (see also
section 5.5.1 on page 9 in the Ava Gateway manual):

https://www.eclipse.org/paho/index.php?page=clients/python/docs/index.php

53

Data transfer via MQTT and display

on the IoT platform

mqtt configuration
miotyServer = "ava.fritz.box" # Broker's IP adress
miotyPort = 1883 # port reserved to MQTT
path = 'mioty/+/+/uplink' # topic, client should be
 subscribed to (this topic
 subscribes to all uplink
 messages from the base station)

The Paho Python client works by means of a loop function that is executed permanently. It
reads the receive and send buffer and processes all found messages. Depending on the
message type, a corresponding callback function is triggered afterwards. The callbacks are
predefined in their structure, but their functionality can be adapted to the corresponding
tasks and applications of the program. This creates the overall functionality of the software.
For our MIOTY™ project two callback functions are relevant, which have to be defined:

• on_message (also see the appendix)
In general, this function allows to receive messages. In our case, it has additionally been
configured to convert these messages directly into the correct format and then forward
them to another broker from where ThingsBoard can subscribe to them. For this, the
message is first decoded from Json, the individual entries are stored and then
assembled as a new string1. After the node has been verified via the EUI, the new data
string can be published using the publish.single function (for the description of the
function parameters and their values, see the this section in the appendix):

callback function to receive messages from broker and forward it
 correctly converted to ThingsBoard;
Called when a message has been received on a topic that the client
 subscribed to without specific topic filter

def on_message(client, userdata, message):
 # new mioty telegram received
 print("received topic:", message.topic)
 #print message as Json string
 print(" ", message.payload)
 #decode Json string (see manual for uplink message format)
 fields = json.loads(message.payload.decode("utf-8"))

 # search for correct EUI Token Pair
 for sens in euiTokenPair:
 sensorEui = sens[0]
 sensorToken = sens[1]
 if(message.topic.find(sensorEui)>=0):
 print("Publish to thingserver:")

 # Assemble Data String: Convert Data into correct Format for
 ThingsBoard
 first = True
 valueDict = fields['components']
 msg = ""

1 To better understand how the data is (must be) converted, see the formats of the messages that the base station

publishes (see section 5.5.2 on page 10 in the Ava Gateway Manual) or that Thingsboard receives (see the following

page) .

https://thingsboard.io/docs/reference/mqtt-api/
https://thingsboard.io/docs/reference/mqtt-api/

54

Data transfer via MQTT and display

on the IoT platform

 #successively run through all data entries and rewrite them
 in the correct format into a new variable msg
 for x in valueDict:
 if(first == False):
 msg += ","
 msg += "\"%s\":%s"%(x,str(valueDict[x]["value"]))
 first=False
 msg = "{" + msg + "}"
 print(msg)

 # Publish converted message to ThingsBoard
 authDict = {'username': sensorToken }
 publish.single(topic="v1/devices/me/telemetry", payload= msg,
 qos=1, retain=True, hostname="mqtt.thingsboard.cloud",
 port=1883, keepalive=10, auth=authDict)
 print(‘sucessfully published’)

• on_connect (also see the appendix)
This callback function is triggered as soon as the broker sends a confirmation after the client's
connection request. It thus verifies the successful connection of client and broker (in our case
with the base station) and enables subscribing to the topics:

callback function, called when broker responds to connection request
def on_connect(client,userdata,flag,rc):
 print("connect")
when connected, subscribe to topic(s) client wants to receive
 miotyClient.subscribe(path)

Afterwards a new client object must be created to use the functions of this class, the
corresponding descriptions must be assigned to the functions and a connection configuration
must be defined:

creates new client object
miotyClient = mqtt.Client("mioty")

functions get assigned to the actual callbacks
miotyClient.on_connect = on_connect
miotyClient.on_message = on_message

connects client to broker
miotyClient.connect(miotyServer, miotyPort, 60)

Finally, the loop function is started, and possible interrupts are defined, so that it can be
exited if necessary:

try:
 #necessary to maintain network traffic flow and trigger the
 appropiate callback function
 miotyClient.loop_forever()

except KeyboardInterrupt:
 #interrupt by user stops loop and disconnects client
 miotyClient.loop_stop()
 miotyClient.disconnect()

55

Data transfer via MQTT and display

on the IoT platform

6.4.1.3
Executing the Program

As soon as the code is complete, the program can be started using the run button. This
should produce the following output in the terminal, as shown in Figure 37:

Figure 37: Terminal Output by correct execution of the MQTT software

With the help of print commands in the code, individual data such as node EUIs, original and
converted sensor data as well as generally the achievement of certain code segments can be
displayed. This facilitates necessary configurations or debugging.
If a MIOTY™ device sends a message every few minutes, it's perfectly fine to establish a new
connection every time. If the device is very active, it might be worth considering rewriting
the code to maintain a stable connection to ThingsBoard.

Under the Latest Telementry tab① of the corresponding node, the current values should
also be available in ThingsBoard (see Figure 38):

Figure 38: Overview of the latest data under the "Latest Telemetry" tab

6.4.1.4
Troubleshooting

If error messages occur (most of the time they already give a concrete hint where the
problem is) or the data cannot be transmitted correctly to ThingsBoard, see the following
troubleshooting tips:

• With the help of the on_log() function of the Paho Python client, data and information
about the MQTT connection and communication can be output. See this section in the
appendix or the following page for more information.

• Console prints between sections allow output to determine where errors may be
occurring in the code and the extent to which the program is executing.

https://www.eclipse.org/paho/index.php?page=clients/python/docs/index.php#callbacks

56

Data transfer via MQTT and display

on the IoT platform

• If the connection between broker and client fails, authentication (EUI, token) and
connection data (IP addresses, ports) and topics should be checked.

• If the connection is established, but the messages are not or not correctly displayed in
ThingsBoard, the format of the sent data should be checked again.

6.4.2
… using the Paho Python Client in connection with Eclipse Mosquitto

This approach shows another simple method for the client implementation of the MQTT
software in Linux. Therefore, the software differs only in the function that publishes the
converted data. In contrast to the previous chapter, the MQTT broker Mosquitto is used for
this. Since this solution approach requires a Python script (that calls an external process
within the Python code), it is presented with the help of a Linux operating system, since it is
easier to implement. The following steps are necessary:

• Installation of the required software:

• A program to open and edit the Python script, a simple text editor like vim is
sufficient (see here for more information). However, corresponding IDEs can also
be used as described in section 6.4.1.1.

• the Paho Python Client, which is used to receive the data from the base station
within the Python script (see here for more information).

• the Eclipse Mosquitto Broker to implement the publish functionality and send the
messages to ThingsBoard (see here for more information):

$ Sudo apt update
$ Sudo apt install vim
$ pip install paho-mqtt
$ Sudo apt install mosquitto

• The Script Code
For the complete code see the appendix. The following aspects differ from the
implementation using the Paho Python Client (for the corresponding explanations of the
overlapping code sections see section 6.4.1.2):

First the Os module must be imported to get access to functions of the operating system to
be able to execute external commands (e.g. running Mosquitto) later. In addition to
importing the important modules for the software, a shebang line must also be inserted at
the beginning of the script to define the interpreter location:

#!/usr/bin/python3
Import os

Besides that, only the code for publishing differs. After successfully receiving and converting
the data into the correct format for ThingsBoard (as in 6.4.1.2), the Mosquitto program is
called and publishes the data under the correct topic. For this, the Mosquitto command is
stored as a string in a variable and executed via the Os module in a subshell. For the exact
configuration of the mosquitto_pub client see this page:

#Publish Data to ThingsBoard via mosquitto
 mosCmd = "\
 mosquitto_pub -d -q 1 \ -h \"mqtt.thingsboard.cloud\" -p
 \"1883\" \-t\"v1/devices/me/telemetry\" -u\"%s\" -m
 {%s}"%(sensorToken,msg)
 print(mosCmd)
 os.system(mosCmd)
 print("\n\n")

https://www.vim.org/vim90
https://www.eclipse.org/paho/index.php?page=clients/python/index.php
https://mosquitto.org/
https://mosquitto.org/man/mosquitto_pub-1.html

57

Data transfer via MQTT and display

on the IoT platform

• Executing the script
After the code is saved, it can be executed by its name using the following command:

python3 mqtt_server.py

The output should look similar to Figure 39:

Figure 39: Terminal Output using the Eclipse Mosquitto Broker

After receiving a MQTT message from the base station the script assembles the data into the
correct format for ThingsBoard. Afterwards the program mosquito executes a single publish.
This includes a CONNECT operation followed by a CONNACK from ThingsBoard. Then the
message gets PUBLISHed and ThingsBoard acknowledges it with PUBACK. Finally the
connection is closed.

Now your Data should be visible on ThingsBoard (see 6.4.1.3 also). Under 6.4.1.4 further
debugging help and tips can be found.

6.5
Create your own IoT-Dashboard: Data Visualization

ThingsBoard offers a variety of different and customizable widgets for visualizing and
monitoring data. This guide shows how to create a dashboard and how to use and configure
individual widgets (e.g. table, chart or alarm). Afterwards the dashboard of our MIOTY™
project could look like Figure 40):

Figure 40: Example display of weather data on ThingsBoard Dasboard

https://thingsboard.io/docs/getting-started-guides/helloworld-pe/?connectdevice=mqtt-windows#step-3-create-dashboard

58

Appendix

7
Appendix

Here once again all complete codes, including their most important functions as well as
blueprints of the MIOTY™ project can be found. All elements to be adjusted for an individual
project are marked in red (for the MIOTY™ project only the EUIs, network keys and MQTT
configurations have to be modified).

7.1 Blueprint for the MIOTY™ M3B magnolinq MAKERBOARD

{
 "version":"1.0",
 "typeEui":"70B3D567700F0100",
 "meta":{
 "vendor":"Fraunhofer Mioty Demonstrator",
 "name":"M3B Sensor"
 },
 "uplink":{
 "id":0,
 "payload":[
 {"name":"temperature", "type":"uint", "size":16, "func":"$ / 10.0 - 273.15",
 "unit":"°C"},
 {"name":"humidity", "type":"uint", "size":8, "unit":"%rel"},
 {"name":"pressure", "type":"uint", "size":16, "func":"$ / 10.0", "unit":"hPa"},
 {"name":"luminosity", "type":"uint", "size":16, "func":"$", "unit":""}
]
 }
}

7.2 Blueprint for the Arduino Pro Mini sensor node

{
 "version": "1.0",
 "typeEui": "70B3D59CD0000095",
 "meta": {
 "name": "Temperature Sensor",
 "vendor": "Fraunhofer Mioty Demonstrator"
 },
 "uplink": [
 {
 "id": 0,
 "crypto": 0,
 "payload": [
 {
 "name": "temperature",
 "component": "16bitTemperature"
 },
 {
 "name": "humidity",
 "component": "16bitHumidity"
 }
]
 }
],
 "component": {
 "16bitTemperature": {
 "size": 16,
 "type": "int",
 "func": "$/10",
 "unit": "°C",
 "littleEndian": false
 },
 "16bitHumidity": {
 "size": 16,
 "type": "int",
 "func": "$/10",
 "unit": "%",
 "littleEndian": false
 }
 }
}

59

Appendix

7.3 Code for the MIOTY™ M3B magnolinq MAKERBOARD
sensor node

/**
 * Hardware components on M3Bv2:
 * SerialM3B - PinHeader - PA9, PA10, 9600baud 8N1
 * SerialMioty - mioty module - PC10, PC11, 9600baud 8N1
 * adxl362 - 3 axis accelerometer - SPI, (CS-PA8, MISO-PA6, MOSI-PA7, SCLK-

PA5, INT1-PA11, INT2-PA12)
 * ms5637 - pressure sensor - I2C Wire2(PB9, PB8)
 * sht31 - temperature & humidity sensor - I2C Wire2(PB9, PB8)
 * si1141 - light sensor - I2C Wire2(PB9, PB8)
 * RGB LED - low active - BLUE-PC6, LED-PC7, RED-PC8
 * Status LED - high active - PC13
 */

// Libraries for Sensor use, MIOTY and M3 Board
#include <miotyAtClient.h>
#include "m3bDemoHelper.h"
#include "m3b_sensors/si1141.h"
#include <SHT31.h>
#include <SparkFun_MS5637_Arduino_Library.h>

//enable Serial Monitor
#include "SoftwareSerial.h"

// Debug Serial
SoftwareSerial SerialM3B(PA10, PA9);
// Mioty Bidi Stamp Serial
SoftwareSerial SerialMioty(PC11, PC10);

//enable I2C
#include <Wire.h>

// Declarations
TwoWire Wire2(PB9, PB8);

MS5637 ms5637;
SHT31 sht31;
SI1141 si1141;

M3BDemoHelper m3bDemo;

//Node specific configurations
// input new EUI
uint8_t eui64[8] = {0x70, 0xb3, 0xd5, 0x67, 0x70, 0x11, 0x14, 0x47};
// input new Network Key
uint8_t nwKey[16]={0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x01, 0x0a, 0x0b,

0x0c, 0x0d, 0x0e, 0x0f};

//Conditional compilation to set the network key once at the beginning, should be executed

only ONCE and commented afterwards
#define SET_NETWORKKEY

void setup() {
 // put your setup code here, to run once:

 m3bDemo.begin();
 SerialM3B.begin(9600);
 SerialMioty.begin(9600);

 //initialize sensors
 Wire2.begin();
 if (ms5637.begin(Wire2) == false)
 {
 SerialM3B.println("MS5637 sensor did not respond. Please check wiring.");
 while(1);
 }
 sht31.begin(0x44, &Wire2);
 si1141.begin(&Wire2);

#ifdef SET_NETWORKKEY
// assign (new EUI and) Network Key
 uint8_t MSTA; // status of mac state machine

60

Appendix

// Local Dettach
 SerialM3B.print("Local Dettach:");
 miotyAtClient_macDetachLocal(&MSTA);

// Set-EUI
 // SerialM3B.print("Set EUI");
 // miotyAtClient_getOrSetEui(eui64, true);
 // SerialM3B.println("");

// Set-Network Key
 SerialM3B.print("Set Network Key");
 miotyAtClient_setNetworkKey(nwKey);
 SerialM3B.println("");

// Local Attach - required only once
 SerialM3B.print("Local Attach:");
 miotyAtClient_macAttachLocal(&MSTA);
 SerialM3B.print("New Mac State:");
 SerialM3B.println(MSTA);
 SerialM3B.println("");
#endif

 // get Device EUI
 uint8_t eui64[8];
 miotyAtClient_getOrSetEui(eui64, false);
 SerialM3B.print("Device EuI ");
 for (int i = 0; i < 8;i++) {
 SerialM3B.print(eui64[i], HEX);
 SerialM3B.print("-");
 }

}

void loop() {
 // put your main code here, to run repeatedly:

 //send Weather data and visualize with blue LED
 digitalWrite(BLUE_LED, LOW);
 float temperature = sendWeatherData();
 digitalWrite(BLUE_LED, HIGH);

 delay(3000);
}

 float sendWeatherData() {
 // readout of weather data; humidity in %, temperature in °C, pressure in hPa
 float pres=0., temp=0., hum=0.;
 temp = ms5637.getTemperature();
 pres = ms5637.getPressure();
 sht31.read();
 hum = sht31.getHumidity();
 uint16_t lux;
 si1141.readLuminosity(&lux);

 // serial Monitor
 SerialM3B.println(" ");
 SerialM3B.print("Pressure [hPa] ");
 SerialM3B.println(pres);
 SerialM3B.println(pres * 10);
 SerialM3B.print("Temperature [°C] ");
 SerialM3B.println(temp);
 SerialM3B.println((temp + 273.15)* 10);
 SerialM3B.print("Humidity ");
 SerialM3B.println(hum);
 SerialM3B.print("Luminosity (rawData) ");
 SerialM3B.print(lux);

 // transmit Data
 m3bDemo.transmitWeather(pres, temp, hum, lux);

 delay(4000);
 SerialM3B.println("");
 return temp;
}

61

Appendix

7.4 Overview of the most relevant functions of the
Mioty_at_client_c and m3b_helper library

Below, only the functions relevant for the MIOTY™ project are presented. For a complete
overview, see the corresponding Github pages for Mioty_at_client_c and m3b_helper.

In general all functions of the Mioty_at_Client_c library return an element of the
enumeration type miotyAtClient_returnCode, which is supposed to show current status
messages of the system and also assist in debugging. For example, the return code 0 stands
for the correct functioning of the node, whereas many others represent various error codes
(for the complete table see the following Github page):

• miotyAtClient_macDetachLocal(uint8_t * MSTA)
Detaches the MAC locally and stores the return code in the function argument MSTA.

• miotyAtClient_macAttachLocal(uint8_t * MSTA);
Attaches the MAC locally and stores the return code in the function argument MSTA.

• miotyAtClient_getOrSetEui(uint8_t * eui64, bool set);
By bool either the EUI can be reset or read out. With a positive bool value, the eui64 is
set, with negative the value is written to the address.

• miotyAtClient_setNetworkKey(uint8_t * nwKey)
Sets a new network key. Requires miotyAtClient_macDetachLocal() and subsequent
miotyAtClient_macAttachLocal().

With the help of the m3b_helper functions the onboard sensors can be accessed, and the
data can be sent:

• .begin()
Initializes the onboard LEDs.

• .transmitWeather(float pres, float temp, float hum, uint16_t lum)
Sends weather sensor data by means of MIOTY™ technology. Attention should be paid
to the order of the individual sensor data. Returns a miotyAtClient_returnCode as well.

7.5 Code for the Arduino Pro Mini sensor node

//Libraries for Sensor use and MIOTY
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
//Import MIOTY TS-UNB-Node Library
#include <ArduinoTsUnb.h>

//enable Serial Monitor
#include "SoftwareSerial.h"

//enable I2C
#include <Wire.h>

//Sensor Declaration
Adafruit_BME280 bme;

//Node specific configurations
//input new EUI
#define MAC_EUI64 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08
//input new Network Key
#define MAC_NETWORK_KEY 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,

0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10
//input Transmit power in dBm, please keep in mind local regulations
#define TRANSMIT_PWR 10

https://github.com/mioty-iot/mioty_at_client_c/tree/master/src
https://github.com/mioty-iot/m3b_helper/blob/master/src/m3bDemoHelper.h
https://github.com/mioty-iot/mioty_at_client_c/blob/master/src/miotyAtClient.h

62

Appendix

using namespace TsUnbLib::Arduino;
// Select preset depending on TX chip, use Arduino PIN 8 for Chip Select
TsUnb_EU1_Rfm69hw_t<8> TsUnb_Node;

void setup() {
 //setup serial Monitor
 Serial.begin(9600);

 //Sensor init
 unsigned status;
 status = bme.begin();
 if (!status) {
 Serial.println("Could not find a valid bme280 sensor, check wiring, address, sensor

ID!");
 //while(1);
 }

 delay(100);

 // Blink the LED
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, HIGH);
 delay(100);
 digitalWrite(LED_BUILTIN, LOW);

 // Init the node and its parameters
 TsUnb_Node.init();
 TsUnb_Node.Tx.setTxPower(TRANSMIT_PWR);
 TsUnb_Node.Mac.setNetworkKey(MAC_NETWORK_KEY);
 TsUnb_Node.Mac.setAddress(MAC_EUI64);

 // TS-Unb ignores packets with an PkgCnt already received
 // We use this function to configure the PkgCnt from the
 // EEPROM
 TsUnb_Node.Mac.extPkgCnt = initExtPkgCnt();

 // Blink LED
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, HIGH);
 delay(1000);
 digitalWrite(LED_BUILTIN, LOW);
}

void loop() {

 // read sensor data and convert to integer
 //Temperatur
 float payload_sensor_t = bme.readTemperature();
 Serial.println(payload_sensor_t);
 payload_sensor_t *= 100;
 int16_t payload_transmitter_t = (int16_t)payload_sensor_t;

 // Humidity
 float payload_sensor_h = bme.readHumidity();
 Serial.println(payload_sensor_h);
 payload_sensor_h *= 100;
 int16_t payload_transmitter_h = (int16_t)payload_sensor_h;

 //Prepare payload for correct format and save to array
 uint8_t txdata[4];
 txdata[0]= (payload_transmitter_t>>8)& 0xFF; //shift bits 8 to the right and limit to 8

bit -> upper 8bit are stored in field, remaining zeros are cut off in front
 txdata[1]= (payload_transmitter_t)& 0xFF; // rear 8bit saved and front cut off
 txdata[2]= (payload_transmitter_h >>8)& 0xFF;
 txdata[3]= (payload_transmitter_h)& 0xFF;

 //data transmission via mioty
 TsUnb_Node.send(txdata, sizeof(txdata));

 Serial.println(payload_transmitter_t);
 Serial.println(payload_transmitter_h);

 // We store the current PkgCnt to the EEPROM to avoid the repetion of packets with the

same count. This value is only written every 256 packets to save energy.
 updateExtPkgCnt(TsUnb_Node.Mac.extPkgCnt);

 // Blink the LED twice to indicate end of transmission
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(LED_BUILTIN, HIGH);
 delay(100);

63

Appendix

 digitalWrite(LED_BUILTIN, LOW);
 delay(100);
 digitalWrite(LED_BUILTIN, HIGH);
 delay(100);
 digitalWrite(LED_BUILTIN, LOW);

 // Sleep the device for 5 seconds using the watchdog timer
 delay(5000);
}

7.6 Overview of the most relevant functions of the
ts_unb_node library

Below are all the functions of the ts_unb_node library relevant to the MIOTY™ project. A
complete overview can be found here.

Configuration
class TsUnb_Node to configure the Node:

• .init()
Initializes the node and the underlying Tx and Mac module. It should be called very early
after the start-up of the program code to bring the transmitter into a defined state.

• .Tx.setTxPower(TRANSMIT_PWR)
Sets the transmit power in dBm. Should be coordinated with local regulations.

• .Mac. setNetworkKey(const uint8_t k0, const uint8_t k1, const
uint8_t k2, const uint8_t k3,const uint8_t k4, const uint8_t k5,
const uint8_t k6, const uint8_t k7,const uint8_t k8, const uint8_t
k9, const uint8_t k10, const uint8_t k11, const uint8_t k12, const
uint8_t k13, const uint8_t k14, const uint8_t k15)
Sets a new network key consisting of 16 (two-digit hexadecimal) numbers. Can be
defined separately for convenience.

• .Mac. setAddress(const uint8_t e0, const uint8_t e1, const uint8_t
e2, const uint8_t e3,const uint8_t e4, const uint8_t e5, const
uint8_t e6, const uint8_t e7)
Sets a new EUI and automatically the ShortAddress of the node. Consists of 8 (two-digit
hexadecimal) numbers and can be defined separately for convenience.

Packet counter related functions:

• initExtPkgCnt();
Initializes the extended Packet Counter using the EEPROM data and returns the current
package number extPkgCnt. Used to avoid repetitive packets.

• updateExtPkgCnt(uint32_t extPkgCnt, bool forceWrite = false)
Updates the Extended Packet Counter in the EEPROM in regular intervals. Returns a
boolean value if the update was successful.

Transmission

• .send(const uint8_t* const payload, const uint16_t payloadLength,
const uint8_t MPF_value = 0, const bool priority= false)
This method transmits the requested payload data. It does the MAC and PHY encoding
as well as the transmission of the data using the transmitter. Both the data and its length
in bytes are passed to the function. In addition, the message can be prioritized by the
bool variable.

https://github.com/mioty-iot/

64

Appendix

7.7 Code for the Paho-based MQTT Client to receive Data

allows to use features from possibly higher Python versions by backporting them into the
current interpreter
from __future__ import print_function

imports client class, necessary for important paho functions and features
import paho.mqtt.client as mqtt

if required, further security functions such as encryption of the connection or identity

verification can be added
import ssl

allows among other things to decode Jason coded strings
import json

mqtt configuration
server = "ava.fritz.box" # Broker's IP adress
port = 1883
path = 'mioty/+/+/uplink' # topic, client should be subscribed to

#callback function to receive messages from broker; Called when a message has been received

on a topic that the client subscribed to without specific topic filter
def on_message(client, userdata, message):
 print("received topic:", message.topic) #print subspribed topic
 print(" ", message.payload) #print message as Json String
 fields = json.loads(message.payload.decode("utf-8")) #decode Json String

 # print information about base stations in corresponding representation or conversion
 print(" baseStations:")
 for i in fields['baseStations']:
 print (" bsEui:", hex(i["bsEui"]), ",rssi: ",round(i["rssi"],1), "dBm, snr:",

round(i["snr"],1), "dB")

 if(fields['typeEui'] != 0): #check if Endpoint Type data available
 #print information about Endpoint
 print(" Endpoint Type:")
 print(" typeEui:",hex(fields['typeEui']))
 if(isinstance(fields['meta'], dict)):
 for x in fields['meta']:
 print(" ", x, ":", fields['meta'][x])

 #print Endpoint Data
 print(" Endpoint Data:")
 print(" raw:", fields['data'])
 valueDict = fields['components']
 if(isinstance(valueDict, dict)):
 for x in valueDict:
 print(" ",x,":", valueDict[x]["value"],valueDict[x]["unit"])

 print("\n\n")

#callback function, called when broker responds to connection request
def on_connect(client,userdata,flag,rc):
 print("connect")
 client.subscribe(path) #when connected, subscribe to topic(s)

client wants to receive

client = mqtt.Client() #creates new client object
functions get assigned to the actual callbacks
client.on_message = on_message
client.on_connect = on_connect
connect client to Broker
client.connect(server, port, 60)

try:
 client.loop_forever() #necessary to maintain network traffic flow and
 trigger the appropriate callback function

except KeyboardInterrupt: #interrupt by user stops loop and disconnects client
 client.loop_stop()
 client.disconnect()

65

Appendix

7.8 Code for the Paho-based MQTT Client to receive and
publish Data

allows to use features from possibly higher Python versions by backporting them into the
current interpreter

from __future__ import print_function

imports client class, necessary for important paho functions and features
import paho.mqtt.client as mqtt

imports server class, necessary for important paho functions and features
import paho.mqtt.publish as publish

if required, further security functions such as encryption of the connection or identity

verification can be added
import ssl

allows among other things to decode Jason coded strings
import json

Put in your Mioty-EUI and ThingsBoard Token
Format: [["EUI1","Token1"],["EUI2","Token2"],["EUI3","Token3"]]
euiTokenPair = [
 ["01-02-03-04-05-06-07-08","n76wTHZcffg1jFZrPvqH"]
]

mqtt configuration
miotyServer = "ava.fritz.box" # Broker's IP adress
miotyPort = 1883 # port reserved to MQTT
path = 'mioty/+/+/uplink' # topic, client should be subscribed to (this topic
 subscribes to all uplink messages from the base
 station)

callback function to receive messages from broker and forward it correctly converted to

ThingsBoard;
Called when a message has been received on a topic that the client subscribed to without

specific topic filter
def on_message(client, userdata, message):
 # new mioty telegram received
 print("received topic:", message.topic) #print subscribed topic
 print(" ", message.payload) #print message as Json string
 fields = json.loads(message.payload.decode("utf-8") #decode Json string (see manual
 for uplink message format)

 # search for correct EUI Token Pair (EUI of the sending node matches settings)
 for sens in euiTokenPair:
 sensorEui = sens[0]
 sensorToken = sens[1]
 if(message.topic.find(sensorEui)>=0):
 print("Publish to thingserver:")

 # Assemble Data String: Convert Data into correct Format for ThingsBoard
 first = True
 valueDict = fields['components']
 msg = ""
 #successively run through all data entries and rewrite them in the correct format
 into a new variable msg
 for x in valueDict:
 if(first == False):
 msg += ","
 msg += "\"%s\":%s"%(x,str(valueDict[x]["value"]))
 first=False
 msg = "{" + msg + "}"
 print(msg)

 # Publish converted message to ThingsBoard
 authDict = {'username': sensorToken }
 publish.single(topic="v1/devices/me/telemetry", payload= msg, qos=1, retain=True,

hostname="mqtt.thingsboard.cloud", port=1883, keepalive=10, auth=authDict)
 print(‘successfully published’)

callback function, called when broker responds to connection request
def on_connect(client,userdata,flag,rc):
 print("connect")
 miotyClient.subscribe(path) # when connected, subscribe to topic(s) client wants
 to receive

66

Appendix

debugging function
#def on_log(client, userdata, level, buf):
 #print("log: ",buf)

creates new client object
miotyClient = mqtt.Client("mioty")

functions get assigned to the actual callbacks
miotyClient.on_connect = on_connect
miotyClient.on_log = on_log
miotyClient.on_message = on_message

connects client to broker
miotyClient.connect(miotyServer, miotyPort, 60)

try:
 miotyClient.loop_forever() #necessary to maintain network traffic flow and trigger
 the appropriate callback function

except KeyboardInterrupt: #interrupt by user stops loop and disconnects client
 miotyClient.loop_stop()
 miotyClient.disconnect()

7.9 Code for the Mosquitto-based MQTT Client to receive and
publish Data

shebang line to define interpreter location
#!/usr/bin/python3

allows to use features from possibly higher Python versions by backporting them into the

current interpreter
from __future__ import print_function

imports client class, necessary for important paho functions and features
import paho.mqtt.client as mqtt

if required, further security functions such as encryption of the connection or identity

verification can be added
import ssl

allows among other things to decode Json coded strings
import json

Access to operating system functions
Import os

Put in your Mioty-EUI and ThingsBoard Token
Format: [["EUI1","Token1"],["EUI2","Token2"],["EUI3","Token3"]]
euiTokenPair = [
 ["01-02-03-04-05-06-07-08","n76wTHZcffg1jFZrPvqH"]
]

mqtt configuration
miotyServer = "ava.fritz.box" # Broker's IP address
miotyPort = 1883 # port reserved to MQTT
path = 'mioty/+/+/uplink' # topic, client should be subscribed to (this topic
 subscribes to all uplink messages from the base
 station)

callback function to receive messages from broker and forward it correctly converted to

ThingsBoard;
Called when a message has been received on a topic that the client subscribed to without

specific topic filter
def on_message(client, userdata, message):
 # new mioty telegram received
 print("received topic:", message.topic) #print subscribed topic
 print(" ", message.payload) #print message as Json string
 fields = json.loads(message.payload.decode("utf-8") #decode Json string (see manual
 for uplink message format)

 # search for correct EUI Token Pair (EUI of the sending node matches settings)
 for sens in euiTokenPair:
 sensorEui = sens[0]
 sensorToken = sens[1]

67

Appendix

 if(message.topic.find(sensorEui)>=0):
 print("Publish to thingserver:")

 # Assemble Data String: Convert Data into correct Format for ThingsBoard
 first = True
 valueDict = fields['components']
 msg = ""
 #successively run through all data entries and rewrite them in the correct format
 into a new variable msg
 for x in valueDict:
 if(first == False):
 msg += ","
 msg += "\"%s\":%s"%(x,str(valueDict[x]["value"]))
 first=False
 msg = "{" + msg + "}"
 print(msg)

 #Publish Data to ThingsBoard via mosquitto
 mosCmd = "\
 mosquitto_pub -d -q 1 \ -h \"mqtt.thingsboard.cloud\" -p \"1883\" \-t
 \"v1/devices/me/telemetry\" -u\"%s\" -m {%s}"%(sensorToken,msg)
 print(mosCmd)
 # execute command string in subshell
 os.system(mosCmd)
 print("\n\n")

callback function, called when broker responds to connection request
def on_connect(client,userdata,flag,rc):
 print("connect")
 miotyClient.subscribe(path) # when connected, subscribe to topic(s) client wants
 to receive

creates new client object
miotyClient = mqtt.Client("mioty")

functions get assigned to the actual callbacks
miotyClient.on_connect = on_connect
miotyClient.on_message = on_message

connects client to broker
miotyClient.connect(miotyServer, miotyPort, 60)

try:
 miotyClient.loop_forever() #necessary to maintain network traffic flow and trigger
 the appropriate callback function

except KeyboardInterrupt: #interrupt by user stops loop and disconnects client
 miotyClient.loop_stop()
 miotyClient.disconnect()

7.10 Overview of the most relevant Functions of the Paho Client
Class

Below are all the functions of the Paho Python Client relevant to the MIOTY™ projects
implementation of the MQTT Clients. A complete overview and documentation can be found
here.

Loop Functions
The loop functions are the driving force behind the client. They detect the events that trigger
the callback functions which represent the actual functionality of the software. Network data
and message processing is not possible without them. For more information about the loop
functions see the following page.

• .loop_start()/ .loop_stop()
Starts or ends the background thread of the loop-function (this is necessary to execute
asynchronous callback functions).

https://www.eclipse.org/paho/index.php?page=clients/python/docs/index.php
https://www.eclipse.org/paho/index.php?page=clients/python/docs/index.php#network-loop

68

Appendix

• .loop_forever()
Is executed permanently and processes network events (e.g., calls the corresponding
callbacks when triggered). Can only be terminated with disconnect().

Connect and disconnect Functions
See the following documentation for more information.

• Connect(host, port, keepalive)
By specifying the host name or its IP address, the corresponding port of the server host
and the maximum communication time, the Paho client can be connected to a broker
(in our case to the basestation broker). The corresponding callback function on_connect
is triggered when the broker confirms the connection.

• Disconnect()
Permanently disconnects the client from the broker.

Callback Functions
Callback functions are called in response to an event. They are therefore not part of the
actual code and can occur asynchronously at any time. To use a callback, the
corresponding function that is to be triggered when the event occurs must first be
defined and this function must then be assigned to the callback. Function parameters
are passed automatically. For more information about callbacks in the Paho Python
client, see here.

• on_connect(client, userdata, flags, rc)
Called when the broker confirms the client's connection request. For debugging
purposes the connection result can be retrieved using the rc parameters.

• on_message(client, userdata, message)
Triggered by the receipt of a message that the client has subscribed to. With the help
of the class members topic, payload, qos and retain of the message function variable,
information and send data of the received message can be read and processed within
the callback function.

• on_log(client, userdata, level, buf)
Triggered when the client has log information and typically used for debugging. The
level variable gives the severity of the message, the buf variable contains the message
itself.

Publish Function

• single(topic, payload=None, qos=0, retain=False,
hostname="localhost", port=1883, keepalive=60, auth=None)
This function allows publishing a single message to the broker and then disconnects.
The following function variables are/ can be relevant for the MIOTY™ project (for more
information on publish functions see the following page):

• topic
The topic on which the payload is published. ThingsBoard receives all messages with
the following topic: v1/devices/me/telemetry (see the following page under
‘Telemetry Upload API’). For general information about topics see section 6.3.2.3.

• payload
The payload to be published. It should be structured as follows:
{"key1":"value1", "key2":"value2"} or [{"key1":"value1"}, {"key2":"value2"}]
(see here).

• qos

https://www.eclipse.org/paho/index.php?page=clients/python/docs/index.php#connect-reconnect-disconnect
https://www.eclipse.org/paho/index.php?page=clients/python/docs/index.php#callbacks
https://www.eclipse.org/paho/index.php?page=clients/python/docs/index.php#single
https://www.eclipse.org/paho/index.php?page=clients/python/docs/index.php#single
https://thingsboard.io/docs/reference/mqtt-api/
https://thingsboard.io/docs/reference/mqtt-api/

69

Appendix

The Quality of Service (QoS) to use when publishing. 1 guarantees that the message
will arrive at least once. See this page for more information on the QoS in MQTT.

• retain
Sets a message flag if the Broker should store the last retained message and QoS
(retained = True). See this page for more information.

• hostname
A string containing the address of the broker to connect to. ThingsBoards own
Broker can be accessed via ‘mqtt.thingsboard.cloud’.

• port
The port to connect to the broker on, the default port for MQTT is 1883.

• Keepalive
The time period in s during which the connection between client and server is
maintained.

• Auth
Authentication parameters for the client (in our case ThingsBoard). In order for
ThingsBoard to receive the data, the corresponding node must first be
authenticated via a token. This token is obtained when registering the node (see
section 6.2.2) The format is as follows:

auth = {'username':"<username>", 'password':"<password>"}.
(Only the username is needed).

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/

